
Eagle: Maturation and
Evolution

Joe Mistachkin <joe@mistachkin.com>

Abstract

Eagle (Extensible Adaptable Generalized Logic Engine) is an
implementation of the Tcl scripting language for the Common Language
Runtime (CLR) .

The initial scope of the project was modest compared to “real” Tcl; however,
it was ambitious considering the sixty day schedule for design,
implementation, and testing. Three years have passed since then.

This paper explains how Eagle has matured and evolved since it was
presented at the 15th Annual Tcl/Tk Conference .

1.Introduction

Eagle has changed significantly since its inception. The primary goal of the
project was to provide a complete automation solution for all types of
applications running on the CLR. The Tcl language was chosen for its
minimalist syntax, simplicity of implementation, and straightforward
language semantics.

It has been three years since the start of the project. It has been two years
since it was first presented to the public at the 15th Annual Tcl/Tk
Conference.

This paper will briefly discuss the major improvements that have been made
in terms of performance, ease-of-use, and compatibility.

2.Maturing Code, Evolving Goals

The primary goal for the project, like the original goal for Tcl itself, was to
provide a highly extensible library for automation of applications via
scripting. All other goals were secondary, including performance, ease-of-
use, and full script-level compatibility with Tcl. After this initial goal was
met, it became clear that the secondary goals could be achieved
incrementally going forward.

3.Performance

Eagle was not originally designed for raw performance; however, it was
designed with performance in mind. Unfortunately, it can be much slower
than “real” Tcl, even for the simplest operations. Profiling reveals that the
slowest operations are:

• Parsing strings into lists.
• Building lists from strings.
• Expression evaluation, primarily string-to-type conversions.

All other performance issues are insignificant compared to these three. The
primary reason type conversions are so slow is the necessity of starting with
the most restrictive numeric type and “failing upward” until something
works. If none of the numeric types work, then the operand is a string.

These performance issues are not seen as critical because Eagle is not
intended to be used in place of a general purpose programming language.
It is intended to automate components and/or “glue” components together
while playing nicely in a fully managed code environment and retaining all
of the dynamic features and expressive power of the core Tcl language.

4.Compatibility

The intent of the project was to provide full script-level compatibility with
Tcl 8.4 ; however, given how aggressive the original project timeline was,
certain features had to be omitted. At the time of this writing, Eagle is still
not 100% compatible with Tcl 8.4. This table compares the major missing
features between the 15th Annual Tcl/Tk Conference and today:

October 2008 October 2010
No Tk functionality. No change.
No argument expansion
syntax.

No change.

No namespace support except
the global namespace.

The command and variable
resolvers are now
extensible; however,
namespace semantics are
still not implemented.

No asynchronous
input/output.

No change.

No server sockets. Fully implemented.
No registry or dde commands. No change.
No pkg::create or pkg_mkIndex
commands.

No change.

No slave interpreters, no
hidden commands, no aliases,
and no Safe Tcl.

Slave interpreters, hidden
commands, aliases, and an
extensible policy mechanism
have been implemented.
The Safe Base is still not
implemented.

No Tcl library, such as the
http, msgcat, and tcltest
packages.

No change.

The following Tcl commands
are not implemented:
fblocked, fileevent, fcopy, glob,
memory, binary, scan, format,
trace, and history.

The fcopy command has
been implemented with the
exception of the “-command”
option.

The Tcl library routines

matching the patterns auto_*
and tcl_* are not
implemented.

No change.

For the open command,
command pipelines and serial
ports are not supported.

No change.

For the exec command, Unix-
style input/output redirection
and command pipelines are
not supported.

No change.

For the load and unload
commands, the semantics are
not identical to those of Tcl
because the binary package
management is radically
different due to the nature of
the CLR.

No change.

For the clock format
command, some of the Tcl
formatting characters are not
supported.

All of the Tcl formatting
characters from Tcl 8.4 are
now supported.

For the clock scan command,
recognition of relative
date/time strings (e.g. “1 day

No change.

ago”, “next Wednesday”, etc.)
is not supported.
For the fconfigure command,
all options except “-encoding”
and “-translation” are not
supported.

No change.

For the regexp command, the
“-about” option is not
supported.

No change.

For the regexp command,
using the “-start” option with
the beginning of a line anchor
does not work properly due to
lack of support for something
like TCL_REG_NOTBOL in the
CLR regular expression
engine.

No change.

For the pid command,
supplying the optional
channelId argument is not
supported (always returns an
empty string).

No change.

For the proc command,
arguments with default values
are not supported.

The proc command has full
support for arguments with
default values.

For the exit command, by
default does not exit the
process; it merely prevents
further trips through the
engine and the interactive
loop.

This is by design. The
“-force” option can be used
to mimic the Tcl behavior.

For the after idle command,
we evaluate the script
immediately prior to the next
evaluation because we have
no idle detection.

No change.

The array statistics
command is not supported.

No change.

For the array command, the
search sub-commands (i.e.
“anymore”, “nextelement”,
“donesearch”, “startsearch”)
are not supported.

Fully implemented.

For the “env” array, the array
names, array get, and info
exists commands are not
supported.

Fully implemented.

Documentation of the
integration and extensibility
API is incomplete.

No change; however, some
progress has been made on
tooling for the generation of
documentation.

Support for tcltest
functionality is incomplete.

The “test” command has
been fully implemented.

Unit tests are incomplete. There are now a large
number of unit tests. More
tests and better code
coverage are still needed.

Many people ask why support for namespaces has not been implemented.
Originally, it was due to lack of time in the project schedule. Today, it is due
to the potentially disruptive effects it would have on stability and
performance. An important thing to remember is that namespaces were
added to Tcl only because the number of global variables and procedures in
large Tcl applications was becoming unmanageable . Since Eagle is not
designed for building stand-alone applications, this was seen as less of an
issue.

It was thought that choosing the CLR as the platform would eliminate or
greatly reduce the need for any future porting efforts. This has proven to
be incorrect. There are a huge number of subtly incompatible versions,
variations, and subsets. Each of these is really a distinct platform. The
following platforms are currently supported:

• Microsoft .NET Framework 2.0, 3.0, 3.5, and 4.0
• Mono on Windows and Unix

The following platforms are untested:

• DotGNU

The following platforms are not supported:

• Microsoft .NET Compact Framework 2.0 and 3.5
• Microsoft Silverlight
• Moonlight

5.Refactoring

Much refactoring work has been performed on the code . These efforts
have focused on reducing the total amount of code and making it cleaner,
more portable, more extensible, and easier to understand. Examples
include:

• More consistent naming of variables, methods, and classes.
• Simplified command and plugin integration.
• Simplified host creation and integration.
• More extensible core marshaller.
• Targeted optimizations for all critical code paths.
• More robust threading model.
• Test framework that works with both Tcl and Eagle.
• Better Tcl/Tk integration.

6.The Future

In the near future, some work needs to be done to advance the project
beyond the beta stage. The currently planned exit criteria for the beta are:

• No unresolved high-priority bugs.
• Script compatibility with Tcl 8.4 except the namespace and clock scan

commands.
• At least one production deployment.
• Full documentation of the managed integration API.
• Full documentation of the differences between Tcl and Eagle.

7.Acknowledgements

This year, the author wishes to thank Dawson Cowals and Stuart Cassoff

for their help.

8.References

[1]Eagle, http://eagle.to/
[2]Tcl Developer Xchange, http://www.tcl.tk/
[3]"Scripting language", http://en.wikipedia.org/wiki/Scripting_language
[4]"Common Language Runtime", http://en.wikipedia.org/wiki/Common_Language_Runtime
[5]15th Annual Tcl/Tk Conference, http://www.tcl.tk/community/tcl2008/info.html
[6]Glue language, http://en.wikipedia.org/wiki/Glue_language

http://en.wikipedia.org/wiki/Glue_language
http://www.tcl.tk/community/tcl2008/info.html
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Scripting_language
http://www.tcl.tk/
http://eagle.to/

[7]Managed code, http://en.wikipedia.org/wiki/Managed_code
[8]Tcl 8.4, http://www.tcl.tk/man/tcl8.4/
[9]Tcl library routines, http://www.tcl.tk/man/tcl8.4/TclCmd/library.htm
[10]tcltest functionality, http://www.tcl.tk/man/tcl8.4/TclCmd/tcltest.htm
[11]Namespaces, http://www.beedub.com/book/2nd/Name.doc.html
[12]Microsoft .NET Framework, http://en.wikipedia.org/wiki/.NET_Framework
[13]Mono, http://en.wikipedia.org/wiki/Mono_(software)
[14]DotGNU, http://en.wikipedia.org/wiki/DotGNU
[15]Microsoft .NET Compact Framework,
http://en.wikipedia.org/wiki/.NET_Compact_Framework
[16]Microsoft Silverlight, http://en.wikipedia.org/wiki/Microsoft_Silverlight
[17]Moonlight, http://en.wikipedia.org/wiki/Moonlight_(runtime)
[18]Eagle ChangeLog, http://eagle.to/ChangeLog
[19]Beta, http://en.wikipedia.org/wiki/Software_release_life_cycle#Beta
[20]Dawson Cowals, http://www.dawsoncowals.com/
[21]Stuart Cassoff, http://wiki.tcl.tk/10628

http://wiki.tcl.tk/10628
http://www.dawsoncowals.com/
http://en.wikipedia.org/wiki/Software_release_life_cycle#Beta
http://eagle.to/ChangeLog
http://en.wikipedia.org/wiki/Moonlight_(runtime)
http://en.wikipedia.org/wiki/Microsoft_Silverlight
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/DotGNU
http://en.wikipedia.org/wiki/Mono_(software)
http://en.wikipedia.org/wiki/.NET_Framework
http://www.beedub.com/book/2nd/Name.doc.html
http://www.tcl.tk/man/tcl8.4/TclCmd/tcltest.htm
http://www.tcl.tk/man/tcl8.4/TclCmd/library.htm
http://www.tcl.tk/man/tcl8.4/
http://en.wikipedia.org/wiki/Managed_code

