
TkDND: a cross-platform drag’n’drop package

Georgios Petasis

Software and Knowledge Engineering Laboratory,
Institute of Informatics and Telecommunications,

National Centre for Scientific Research “Demokritos”,
Athens, Greece

petasis@iit.demokritos.gr

Abstract
This paper is about TkDND, a Tcl/Tk extension that aims to add cross-application drag and
drop support to Tk, for popular operating systems, such as Microsoft Windows, Apple OS X
and GNU/Linux. Being in its second rewrite, TkDND 2.x has a stable implementation for
Windows and OS X, while support for Linux and the XDND protocol is still under
development.

1 Introduction
This paper is about TkDND, a cross-platform and multi-protocol Tcl/Tk extension, which aims
in extending Tk with cross-application drag and drop capabilities. The term “drag and drop”
refers to the action of clicking on a virtual object, and either dragging it to a different
location, or onto a different virtual object. Being an important element of modern UI
development, several attempts have been made in order to extend Tk with drag and drop
(from now on denoted as “DnD”) capabilities. Several projects are listed in the relevant Tcl
Wiki page [1], which can be categorised into two main categories: approaches that target
DnD within the same application, and approaches that target DnD among different
applications. Implementing DnD within the context of a single application is a relatively easy
task: a simple communication mechanism among virtual objects needs to be devised, which
can be implemented even in Tcl. Thus, several intra-application DnD approaches are
available, especially within packages that implement composite widgets or “megawidgets”,
such as BWidget [2]. On the other hand, supporting inter-application DnD is a more
challenging task, but nevertheless a more interesting and useful task. Initial approaches in
this category devised several inter-application communication schemes, which targeted
other Tk applications, such as BLT [3] with its communication scheme based on Tk’s “send”
command. More recent approaches tried to solve an even more complex task, intra-
application DnD without any restriction on the type of applications (i.e. even for non-Tk
applications), by exploiting standardised DnD communication protocols available for the
various operating systems. These approaches targeted mainly popular operating systems,
such as Microsoft Windows. Olednd [4], developed by Gordon Chaffee, is amongst the first
DnD approaches for Tk that can be characterised as complete: Olednd supported DnD with
any application running on the Microsoft Windows operating system, by exploiting the
platform’s native DnD protocol, OLE DnD. Olednd has been the main inspiration of the
extension described in this paper, TkDND, whose main motivation was to enhance the
functionality offered by Olednd under Windows, and provide the same functionality under
other popular operating systems, such as Gnu/Linux and Mac OS X.

TkDND is not a recent extension, as its development started in 2000. With an API for
applications inspired by Olednd but targeting multiple operating systems, TkDND initially

concentrated on implementing DnD for the Windows operating system using OLE DnD, and
having the Olednd implementation as a guide. Once the Windows implementation was in
place, implementation shifted in supporting DnD under the Linux operating system. At that
time, two communication protocols were available under Linux, all of which bind with a
specific widget toolkit. The older of these protocol was the Motif [5] DnD protocol,
supported by Motif and LessTif [6] applications, and partially by the GTK [7] and GNOME [8]
applications. The second protocol was an open standard, in early stage of development,
known as XDND [9]. XDND was mainly supported by Qt [10] and KDE [11] applications.

TkDND tried to compromise the two protocols: the 1.x series of TkDND tried to implement
support for the XDND for both dragging and dropping actions, and support for dropping
actions under the Motif DnD protocol. All implementation for both was done from scratch,
as there were no general-purpose libraries implementing these protocols beside the widget
toolkits implementing them. The end result was not satisfactory, as it exhibited several
problems:

 The implementation was not stable enough. The primary author of TkDND tried to
tackle the problem of implementing two protocols from scratch, without having
adequate knowledge of Xlib [12], led a prolonged development period and a result
of low quality.

 The XDND protocol was not mature enough and was under constant revisions.
TkDND was forced to support several versions of the protocol, constituting XDND
support a moving target.

 Several compatibility problems arose in practice. Despite both GTK and Motif
applications sharing the same protocol (Motif), it was not uncommon drops from
Motif applications or Firefox [13] to always succeed, while dropping from Gnome
applications to exhibit random behaviour. The situation regarding XDND was no
better: not only the protocol was changing, but also support from the applications
was changing with each Qt release.

In addition to all these, TkDND 1.x was an ambitious attempt, targeting support for as much
types as possible, including transferring of plain text, Unicode text, files, links, images, etc.
All these problems led to the decision of abandoning the 1.x series of TkDND, and start a
new, novel implementation of TkDND, the 2.x series, in 2006. TkDND brought yet another
API for applications, although TkDND 1.x applications are still supported through an
emulation layer written in Tcl. The main implementation guideline followed by TkDND 2.x is
to re-implement as few elements as possible in C/C++, and implement as much as possible in
Tcl. The current public release of TkDND is 2.2, which offers support for DnD under Windows
and OS X in transferring text and files, but drops Linux support. For a while, TkDND 2.x
offered support for the dropping operation under the XDND protocol, but this support has
ceased working with recent versions of the Qt library. Regarding this issue, a TIP [14] has
been proposed to enhance the “selection” Tk command, which hopefully will solve this
incompatibility. In addition, TkDND 2.x introduces support for cross-platform types, by
adding an abstraction layer over them: applications can use types such as DND_Text and
DND_Files, with TkDND performing the necessary mappings to types depended on the
operating system. Finally, TkDND would have not been possible without the work and ideas
of several contributors: Gordon Chaffee, for providing the inspiration and OLE DnD
prototype, Laurent Riesterer for helping in the implementation of various parts of TkDND
1.x, and Kevin Walzer, who with Daniel A. Steffen, was the motivation power behind the
Mac OS X implementation, by driving the development, contributing a large part of the OS X
implementation and testing TkDND under OS X.

The rest of the paper is organised as follows: chapter two briefly describes the motivation
behind the implementation of TkDND 2.x, along with an overview of how TkDND can be
used by Tcl/Tk applications. Chapter three provides some details about the protocols
employed under the supported operating systems, while chapter four concludes this
document.

2 Design and usage
One of the main aims of TkDND 2.x re-write was simplicity, through the implementation of a
large part in Tcl/Tk, instead of C, which dominated the implementation of TkDND 1.x. Doing
so, eases the development overhead, but also allows the easy adaptation of TkDND to
specific needs, even by the end users. For example, TkDND 1.x offered a more complex API,
where the various event callbacks had to be specified/configured through the TkDND API,
whereas in TkDND 2.x callbacks are implemented through Tk virtual events: not only it is
easier for users, as they are already familiar with Tk events, but it is also easier for TkDND
maintainers, as the management/destruction/association with Tk widgets is done by Tk.

2.1 Using TkDND
Using TkDND is quite easy. Drag and Drop operations can be separated in two categories:

 Accepting a drop (either from the same or from another application). Widgets
registered to accept drops (data) are named as “Drop Targets” in TkDND
terminology.

 Initiating a drag operation, allowing the transfer of data from a Tk widget to another
widget (either to the same or to another application). Widgets registered to initiate
drag operations are named as “Drag Sources” in TkDND terminology.

2.1.1 Drop targets
A drop target can be registered as:

tkdnd::drop_target register window ?type-list?

where type-list can be a list of cross-platform types (such as DND_Text or DND_Files),
platform dependent types (such as CF_TEXT – although usage of platform dependent types
is discouraged), or the type “*”, interpreted by TkDND as “any type”.

When a drop operation occurs over a Tk widget registered as a drop target, TkDND will
deliver the following virtual events:

 <<DropEnter>>: This event is triggered when the mouse enters the window during a
drop action. The purpose of this event is to change the visual state of the window,
so as to notify the user whether the drop will be accepted or not. The binding script
is expected to return a single value that will define the drop action. This returned
action can be one of copy, move, link, ask, private, and refuse_drop. This event is
not mandatory, but if it is defined, it has to return an action. In case an action is not
returned, the drop is refused for this window.

 <<DropPosition>>: This event is triggered when the mouse moves inside the window
during a drop action. The purpose of this event is to let window decide if it will
accept the drop and the action of the drop, if a drop is going to happen at the
specific mouse coordinates. Thus, the script binding for such an event can get the
mouse coordinates and the pressed modifier buttons (such as ctrl, shift or alt), and is
expected to return the drop action, which again must be one of copy, move, link,
ask, private, and refuse_drop. This event is not mandatory, but if it is defined, it has

to return an action. In case an action is not returned, the drop is refused for this
window.

 <<DropLeave>>: This event is triggered when the mouse leaves outside the area
covered by the window, without a drop happening. The binding of such an event is
expected to restore the visual state of the window to normal (i.e. the visual state the
window was in before the <<DropEnter>> event was triggered). The binding for such
an event is not expected to return a value.

 <<Drop>>: This event is triggered by a drop action, and it is expected to handle the
dropped data and reset the visual state of the window. The binding script is
expected to return a value, which will be the action that has been performed to the
data, and must be one of copy, move, link, ask, private, and refuse_drop. This event
is not mandatory, but if it is defined, it has to return an action. In case an action is
not returned, the drop is refused for this window.

 <<Drop:type>>:This event is a specialisation of the generic <<Drop>> event,
augmented with a type. If such a binding exists and the drop type matches type, this
event binding will be executed, instead of the generic <<Drop>> event binding.
These events allow for easy specialisation of drop bindings, according to the type of
the dropped data. type can be either a platform independent or a platform specific
type. The binding script of such an event is expected to return a value, which will be
the action that has been performed to the data, and must be one of copy, move,
link, ask, private, and refuse_drop. This event is not mandatory, but if it is defined,
it has to return an action. In case an action is not returned, the drop is refused for
this window.

2.1.2 Drag sources
A drag source can be registered as:

tkdnd::drag_source register window ?type-list? ?mouse-button?

where:

 type-list can be a list of cross-platform types (such as DND_Text or DND_Files),
platform dependent types (such as CF_TEXT – although usage of platform
dependent types is discouraged), or the type “*”, interpreted by TkDND as “any
type”.

 mouse-button is the mouse button (i.e. “1”, “2”,. “3”, etc.) that will be used in the
binding for initiating a drag operation. If not specified, it defaults to “1”, i.e. the left
mouse button.

Once a widget is registered as a drag source, TkDND will add the proper bindings to initiate a
drag operation. During the drag operation TkDND will not deliver any virtual events to the
widget. The only event that will be delivered relates only to retrieving the data:

 <<DragInitCmd>>: This event is triggered when a drag action is about to start. This is
a mandatory event (whose absence will cancel the dragging action), and is
responsible for providing three things: the list of actions and format types supported
by the drag source, and of course the data to be dropped. Thus, the binding script
for such an event must return a list of three elements: the drop actions supported
by the drag source (which can be any of copy, move, link, ask, and private), the
format type list that the data can be dropped as (which can be any platform
independent or platform specific type), and finally the data. A simple example of
such a binding, is:
bind .drag_source <<DragInitCmd>> \

 {list copy DND_Text {Hellow world!}}

 <<DragEndCmd>>: This event is triggered when the dragging action has finished
(either when the drop was successful or not). Its main purpose is to process the
dropped data according to the drop action returned by the drop target. Binding for
such an event is not mandatory, and the binding is not expected to return a value.

3 Protocols and Operating Systems
TkDND implements support for different platforms under different operating systems.
Currently, the supported protocols are OLE DnD (Windows), XDND (Linux) and Cocoa DnD
(Mac OS X).

3.1 Microsoft Windows
The drag and drop under the Windows operating system is implemented through Object
Linking and Embedding (OLE) [15]. The operating system provides a convenient public API
for initialising OLE support in the application, registering a widget as a drop target, and
performing drag operations.

3.1.1 Initialising OLE
The initialisation of OLE version 2 is very easy, through a call to OleInitialize().

3.1.2 Registering a widget as a drop target
The registration of a Tk widget as a drop target is performed through the RegisterDragDrop()
function, which requires two parameters:

 The handle (HWND) of the widget.

 An object of type IDropTarget.

The IDropTarget object is used by the operating system to communicate the required events
(DragEnter, DragOver, DragLeave, and Drop), to retrieve the types supported by the drop
target, and to accept the dropped data. TkDND subclasses IDropTarget, in order to interface
it with Tk.

3.1.3 Performing a drag operation
The operating system provides a function for performing drags from widgets, through the
function DoDragDrop(), which requires four arguments:

 A data object of type IDataObject, which contains the data that will be transferred if
the drop operation is successfully completed.

 A drag source object, of type IDropSource, which controls when the drop will
happen, and what cursors will be used during the drag operation.

 The list of actions supported by the drag source (like copy, move, link, etc.).

 The action decided by the drop target, if the drag operation has not been cancelled.

3.1.4 Communicating events
OLE DnD supports four types of events that can occur during a drag and drop session, and
most of them involve the drop target. These events are:

 DragEnter

 DragOver

 DragLeave

 Drop

 QueryContinueDrag

 GiveFeedback

All these events are communicated to the application by calling the corresponding methods
on the provided by the application objects (IDropTarget and IDropSource).

3.2 Apple Mac OS X
The implementation of TkDND for the OS X operating system is written in Objective C, and
uses the DnD facilities offered by the operating system for the Cocoa framework [16]. The
Cocoa DnD protocol is very similar to the XDND protocol supported by GNU/Linux, as there
exists great resemblance on how the two protocols operate, how the types are named, and
the communication events exchange. However, there is significant difference between the
two protocols: The Cocoa DnD offers a convenient API any application can use to support
DnD: applications can either accept drops or initiate dragging actions without having to re-
implement the protocol from scratch (as is the case for XDND). From a programmer’s point
of view, Cocoa DnD can be regarded as “XDND done right”. Of course, TkDND took
advantage of the similarities between the two toolkits, in re-using all the support code
(written in Tcl, in the library section of TkDND) initially written for XDND under the Linux
operating system.

3.2.1 Initialising Cocoa DnD
No specific initialisation is required.

3.2.2 Registering a widget as a drop target
The registration of a Tk widget as a drop target is performed through the
registerForDraggedTypes() method of the NSView, associated to the widget. This method
requires a single parameter:

 An array of the supported types of the drop target.

3.2.3 Performing a drag operation
The operating system provides a method for performing drags from widgets, through
NSView, associated with the drag source widget. The data must be copied to the clipboard,
prior to invoking the dragging action. In order to initiate a dragging action, the following
parameters are required:

 An icon that will be used during the dragging operation.

 The location of the icon (screen coordinates) when the dragging operation is
initiated. These coordinates are used to provide visual feedback of a failed dragging
operation.

 The mouse event that initiated the dragging operation.

 The clipboard containing the data to be dropped.

 The NSView of the window initiating the dragging operation.

 A Boolean flag, denoting whether the icon will slide back in case the drag action fails.

Under the Cocoa DND there is no support in retrieving the action applied to the data during
a successful drop action. TkDND assumes that this action is always copy.

3.2.4 Communicating events
Cocoa DnD supports five types of events that can occur during a drag and drop session, and
most of them involve the drop target. These events are:

 draggingEntered

 draggingUpdated

 draggingExited

 prepareForDragOperation

 performDragOperation

3.3 GNU/Linux
Gnu/Linux is currently the least supported operating system by TkDND 2.x. The main
obstacle of this platform is the complete absence of any public API that can be used for DnD
operations, along with various compatibility issues observed among the various widget
toolkits available for the platform. The dominant DnD protocol under Linux is XDND, details
of which can be found at [9]. TkDND offers limited support for this protocol, by supporting
only dropping actions. However, currently dropping from applications on Tk applications
does not work: while the dropping operation is performed, TkDND is unable to retrieve the
dropped data from the clipboard due to timestamp mismatches. Regarding this issue, a TIP
*14+ has been proposed to enhance the “selection” Tk command, which hopefully will solve
this incompatibility.

4 Conclusions
This paper presents TkDND, a Tcl/Tk extension that aims to add cross-application drag and
drop support to Tk, for popular operating systems, such as Microsoft Windows, Apple OS X
and GNU/Linux. TkDND is an open source project, implementing a Tcl extension written in C,
C++ and Objective C, distributed under the BSD license. The source code is hosted at the SVN
repositories of SourceForge [17]. The current public release is TkDND 2.2, offering stable
support for the Microsoft Windows and Apple OS X (Cocoa framework) operating systems.
Support for the Linux operation system is currently missing, with stable support under Linux
being a desirable, but difficult to achieve, target.

5 References
[1] Drag and Drop in Tk: http://wiki.tcl.tk/571
[2] The BWidget toolkit: http://wiki.tcl.tk/2251
[3]BLT: http://blt.sourceforge.net/
[4] Olednd: http://wiki.tcl.tk/571
[5] Motif: http://www.opengroup.org/motif/
[6] LessTif: http://lesstif.sourceforge.net/
[7] The GTK+ Project: http://www.gtk.org/
[8] GNOME: The Free Software Desktop Project: http://www.gnome.org/
[9] XDND – Drag-and-Drop Protocol for the X Window System:

http://www.newplanetsoftware.com/xdnd/
[10] Qt – A cross-platform application and UI framework: http://qt.nokia.com/
[11] The KDE Community: http://www.kde.org/
[12] Xlib: http://en.wikipedia.org/wiki/Xlib
[13] Mozilla Firefox: http://www.mozilla-europe.org/
[14] TIP 370: http://www.tcl.tk/cgi-bin/tct/tip/370.html
[15] OLE – Object Linking and Embedding:

http://en.wikipedia.org/wiki/Object_Linking_and_Embedding
[16] Drag and Drop Programming Topics for Cocoa:

http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/DragandDr
op/DragandDrop.html

[17] TkDND at SourceForge: https://sourceforge.net/projects/tkdnd/

