
Institute of Informatics & Telecommunications – NCSR “Demokritos”

iTcl and TclOO
From the perspective of a simple user

Georgios Petasis

Software and Knowledge Engineering Laboratory,
Institute of Informatics and Telecommunications,
National Centre for Scientific Research “Demokritos”,
Athens, Greece
petasis@iit.demokritos.gr

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

2 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

iTcl and Tcl 8.6

  Assume an application that uses Itcl
–  What happens if it is run under ActiveTcl 8.6 beta?

3 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

  Ok, this happens as iTcl 3.4 is loaded in 8.6
–  Lets compile Tcl from sources (CVS HEAD 27/Jul/10)
–  Tcl now contains a new iTcl implementation (4.0b4)

iTcl and Tcl 8.6

4 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

iTcl and Tcl 8.6

  Ok, iTcl 4.0 has a problem with a variable
–  Lets “correct” this

variable objectsTree {}

method CreatePropertiesPage_Objects {} {

 chain

 catch {
 $objectsTree configure -dropenabled 1 -dragenabled 1 \

 -dropcmd "$this
CreatePropertiesPage_Objects_DropEvent“

 }
};# CreatePropertiesPage_Objects

5 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

iTcl and Tcl 8.6

  iTcl object variables not supported?
–  It seems no…

 but, object naming was internal

  iTcl 4.0 has been actively maintained!
–  Significant progress since last test (6-8 months ago)
–  Does not crash
–  A few “rough edges” remain

  But:
–  Support for iTcl object variables seems missing

  Status of iTcl next generation?
–  Unknown. Not working either in previous tests

6 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

iTcl and Tcl 8.6

Alternatives for running the application?

  Wait until iTcl 4.0 is ready
–  Will it support 3.4 object variable naming?

  Port the code from iTcl to TclOO
–  Hm, 41 classes? ~20.000 lines of code?

 Such a task needs to be automated

  Stick to Tcl 8.5 and iTcl 3.4
  But what happens with open source applications?

7 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

8 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting from iTcl to TclOO (1)

  A medium sized application: Ellogon
–  Open source (LGPL), http://www.ellogon.org
–  Sticking to Tcl 8.5 is not an option
–  But ~480 iTcl classes need to be ported!

 Different “variable” syntax
 The “my” keyword when calling methods
 Different method exporting convention
 …
 Where is TclOO documentation?

9 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting from iTcl to TclOO (2)

  Largely a manual (and time consuming) effort
–  A helper Tcl script to perform “easy” substitutions
–  Several months were needed
–  But, a few portions could not be ported

 TclOO has some limitations
– Or do I have a bad programming style?

  The task is now largely finished
–  And the helper Tcl script got quite complex

  And what about other applications?
–  How about turning the conversion script into an iTcl

emulator?

10 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting from iTcl to TclOO (3)

  The distance of a script that reformats code from
an emulator is a simple “eval”

  I have created a small package that emulates iTcl
–  630 lines of code
–  Ignores less essential features (like protection)

 The goal is to get my applications running

11 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting from iTcl to TclOO (4)

  A quick and simple approach actually
  Test application executes further than latest iTcl

4.0
  iTcl 3.x object variable references (“@itcl …”) are

converted to TclOO equivalent
But:
  Not all code substitutions are performed

–  Adding the “my” keyword to existing code is tricky
–  4 regular expressions are not enough to handle this

 A package that “parses” Tcl is not available
–  Finally I gave up

  no regular expressions for some cases

12 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting: Differences (1)

Most notable differences between the two extensions:
  No configure/cget on TclOO objects
  No common variables across objects of the same

class in TclOO
  No “static” class methods (methods that do not

require an object to be called) in TclOO
  Different semantics for variables
  A specific method in the classes hierarchy of an

object cannot be called in TclOO
  TclOO requires the keyword “my” while calling

methods from inside of an object

13 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting: Differences (2)

Most notable differences between the two extensions:
  TclOO automatically exports methods that start

with a lowercase letter
  No facility for “local” to procedures objects (like

itcl::local) in TclOO

14 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting: Similarities

iTcl TclOO
method my method
$this [self]
chain next

itcl::scope my varname
inherit superclass

itcl::body oo::define body

Interesting features of TclOO
  Everything subclasses oo::object
  “mixin”s
  “unknown” on objects
  The “my” keyword

15 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

16 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Case study: the Ellogon NLP platform

  Ellogon is an infrastructure for natural language
processing
–  Provides facilities for managing corpora
–  Provides facilities for manually annotating corpora
–  Provides facilities for loading processing

components, and apply them on corpora
  Development started in 1998

–  I think with Tcl/Tk 8.1
–  ~500.000 lines of C/C++/Tcl code
–  A lot of legacy code, especially in the GUI

 No widespread use of tile/ttk
 No OO (i.e. iTcl) in most parts of the code

17 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon Architecture

C++ API

18 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon: plug-ins in many programming languages

19 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

The roadmap for Ellogon 2.0

The goals for Ellogon 2.0 are:
  Make Ellogon’s core thread safe (done)

  Make Ellogon multi-threaded (feasible?)
–  How Ellogon & the Tcl thread model can cooperate?

  Modernise GUI (using OO and ttk widgets)
–  ~30% completed
–  Initially written in iTcl, now ported to TclOO
–  Includes a complete rewrite of Annotation Tools of

Ellogon

20 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Annotation Tools: polymorphism required

Annotation tools is a very demanding area
  A lot of tasks that need annotated corpora
  Each task, may have its own annotation scheme
  Each group, may pose different requirements for

the tool

The first generation of tools was:
  coded in plain Tcl/Tk
  difficult to adapt/extend

21 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

First generation tools (1)

22 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

First generation tools (2)

23 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

First generation tools (3)

24 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (1)

25 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (2)

26 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (3)

27 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (4)

28 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (5)

29 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (6)

30 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (7)

31 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (8)

32 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (9)

33 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (10)

34 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Classes Decomposition (1)

ToplevelWindow

TextWidgetDisplay

ButtonAnnotator

DocumentSelector

EventDefiner

35 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Classes Decomposition (2)

ToplevelWindow

TextWidgetDisplay

ButtonAnnotator

DocumentSelector

EventDefiner

36 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

37 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: cget/configure

  Add cget/configure on all classes
–  No need for a complex implementation of configure/

cget
 I only use them to get/set variable values

  Very easy to add new methods on all objects!
–  Everything is a child of oo::object

  Simple implementation

oo::define oo::object method cget {name} {

 set name [string range $name 1 end]

 my variable $name; return [set $name]

};# cget

38 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: common (1)

  TclOO has another trick:
–  Procedure oo::define::<name> extends oo::class

 Implementing ::oo::define::common allows to use the
keyword “common” during class creation

proc ::oo::define::common {varname args} {
 if {[llength $args] > 1} { … }
 # Get the name of the current class
 set cls [lindex [info level -1] 1]
 oo::define $cls self export varname; # Export method varname
 # Initialise the variable
 if {[llength $args]} {
 set [$cls varname $varname] [lindex $args 0]
 }

};# ::oo::define::common

39 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: common (2)

  But common also needs a method to be called from
methods accessing common variables

oo::define oo::object method common {args} {

 if {![llength $args]} return

 set callclass [lindex [self caller] 0]

 oo::define $callclass self export varname

 foreach vname $args {

 lappend pairs [$callclass varname $vname] $vname

 }

 uplevel 1 upvar {*}$pairs

};# common	

  Common and my cget/configure do not mix

40 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: class methods (1)

Define "classmethod"...

proc ::oo::define::classmethod {name {args ""} {body ""}} {
 # Code from: http://wiki.tcl.tk/21595#pagetoce30e53a1
 set argc [llength [info level 0]]
 if {$argc == 4} {
 uplevel 1 [list self method $name $args $body]
 } elseif {$argc == 3} {
 return -code error "..."
 }

 # Get the name of the current class
 set cls [lindex [info level -1] 1]
 # Get its private "my" command
 set my [info object namespace $cls]::my
 # Make the connection by forwarding
 tailcall forward $name $my $name
};# ::oo::define::classmethod

41 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: class methods (2)

  What about inheritance?

oo::class create ELEP::Base::Utilities {

 classmethod userAppDir {} {...}
}

oo::class create ELEP::System::System {

 superclass ELEP::Base::Utilities

 classmethod systemConfigurationDir {} {
 return [my userAppDir]/Systems/Config
 };# systemConfigurationDir

  unknown method "userAppDir"

42 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

43 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Widget classes (1)

  In Ellogon, I don’t think in terms of Tk widgets
–  In fact, I totally ignore them

  Only 3 classes available, which represent widgets
–  Toplevel, Dialog, Widget, RibbonToplevel

 RibbonToplevel has a Windows Ribbon instead of a menu

  Some common methods for all classes
–  getToplevel
–  getToplevelObject
–  getClientArea

  Automatic variables
–  win for toplevel/dialogs
–  widget for widgets

44 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Widget classes (2)

  Widgets are destroyed when objects are deleted,
and vise versa
–  In a way similar to iTk

  Toplevel/Dialogs generate widgets based on the
object names

  Objects of the Widget class need the widget type
and name
–  i.e. Widget ttk::button .button ?args?

45 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon building blocks

  Many building blocks that inherit Widget
–  Only the Tk widget that will contain the block is

required (the “parent”)
–  i.e. ButtonAnnotator, 1-Click selector,

TemplateFiller, TextViewer, HTMLViewer,
AllignedTextViewer, etc.

  A generic class that represents an Annotation tool
–  Inherits from Toplevel
–  Splits client area into two columns, separated by a

ttk::panedwindow
  All tools, subclass this class, add another layout if

required, and create/place building block objects

46 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

47 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Creating an Annotation Tool

  Gluing building blocks is easy, but what about the
user experience?

  Lets see an example, by creating an Annotation
tool that annotates a document with a semantic
model (i.e. an ontology)
–  For this task, the bits required are:

1.  An annotator to annotate “properties” found in the
text

2.  An annotator to group properties into objects
3.  An annotator to group objects into other objects

48 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Annotating properties: the button annotator (1)

49 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Annotating properties: the button annotator (2)

  Cooperates with a viewer (text, HTML, Aligned
text, Aligned HTML) and allows the user to
annotate the selected text with one or more
properties

  The annotation schema is dynamic
–  Method createSpecificationSelectorObject()

 Creates an AnnotationSpecificationSelector object
–  Method show()

 Calls AnnotationSpecificationSelector.show() and waits
for an answer

–  Various schemas are read from an XML file, and
presented to the user

–  Button annotator adapts to the selected schema
50 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Grouping properties/objects

  The TemplateFiller annotator
  Again presents a dynamic schema
  Now method createSpecificationSelectorObject()

–  Creates an
AnnotationAndTemplateSpecificationSelector object

  How easy is to mix the two annotators?
–  Easy, just create the two objects and place them on

a single annotation tool
  Any disadvantages?

–  Yes. The user gets two dialogs for configuring a
single tool!

51 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

The multiple dialog issue

How can this be resolved?

  A new class must be created, which is the
concatenation of the two configuration dialogs

  The two objects must somehow create and use the
same configuration object

52 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

53 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Concatenating dialogs (1)

  In iTcl was very easy:
–  Create a new class that inherits the two

configuration objects
–  iTcl has the ability to call explicitly methods from the

class hierarchy:
 Method populateDialogFrame() just creates two

ttk::labelframe and calls populateDialogFrame() of the
two inherited classes with the proper parent frame.

  In TclOO the task is far more complex!
–  You cannot simply inherit both classes

54 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Concatenating dialogs (2)

The best alternative?
  Create a new class that behaves as both

configuration selectors, and drives instances of the
two selectors internally
–  The new class must have all methods of the two

objects
–  The new class must have all the public variables of

both objects (so as cget/configure to work)

55 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Exposing variables of contained objects

1.  Declare all variables as “automatic”
–  i.e. in class, with the “variable” keyword

2.  Use “upvar” to link variables between two objects

56 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Exposing methods of contained objects

  Methods from both contained objects must be
exposed - through “unknown”

method unknown {args} {
 ## Try to call the aggregated objects...
 if {![catch {$ann_selector {*}$args} result]} {
 return $result
 }
 if {![catch {$templ_selector {*}$args} result]} {
 return $result
 }
 next unknown {*}$args
};# unknown

57 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

  So, are all problems solved?
–  No

  Each class stores state information in the
configuration array of the application, using a key
based on the class name.

method saveState {} {
 $ann_selector saveState
 $templ_selector saveState
};# saveState
method restoreState {frame} {
 $ann_selector restoreState $frame.annotation
 $templ_selector restoreState $frame.template
};# restoreState	

Problems solved?

58 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

What about efficiency?

  Is there a problem using unknown to “distribute”
method calls to the proper object?
–  I don’t know, I haven’t measured
–  I assumed that there is a penalty, so I explored

alternatives before implementing a similar approach
for “merging” Button Annotator & Template Filler

  What I finally did, was to create a new class which
–  Inherits only ButtonAnnotator
–  The various methods of TemplateFiller are copied/

extend methods of the new class
 Thus “next” works, as there is only a linear hierarchy to

follow
 The configuration selector dialog object is single/common

59 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

60 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

TclOO: “gray” areas

  Mixins
–  I have used “mixin”s a few times, but what are

really “mixin”s?
 What happens with colliding method names, the

constructor and inheritance?

  Inheritance
–  How do you inherit from classes whose constructors

take different arguments?
–  The same issue can occur with plain methods and

“next”
–  Is “next” limited, and an additional invocation

method is required?

61 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Conclusions (1)

  Both iTcl & TclOO have their strengths and
weaknesses

  iTcl:
–  Lacked support for unknown
–  I had to use the “@itcl …” variable naming for

serialising objects
–  info method is error-prone

62 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Conclusions (2)

  Both iTcl & TclOO have their strengths and
weaknesses

  TclOO:
–  No support for calling a specific class method from

the superclasses
–  Variables cannot be initialised without a constructor
–  Are traces supported?

 Can constructor arguments be recorded?

  Should things like classmethod & common be
moved from the wiki to the Tcl core?

63 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Thank you!

13 Oct 2010 64 iTcl & TclOO: From the perspective of a simple user

