
Adventures in TclOO
Donal Fellows,

University of Manchester

Abstract
I have been working on a number of small projects that use TclOO in fairly

complex ways, and this paper will cover some of them. In particular, it will look
at its use for building more advanced APIs in the areas of interfacing to the

HTTP protocol for use with REST services, for mapping relational databases
into Tcl, and for supporting metadata on TclOO objects themselves.

This paper is a collection of write-ups for some
small projects in Tcl that I have been working
on in the past year that all leverage the TclOO
object system[1]. The first is a wrapper for the
standard http package that makes it easier to
write clients for particular types of web ser-
vices, the second is a way of representing the
contents of a relational database in Tcl and
interacting with it, and the third is a mechanism
for adding extra information to classes and their
contents.

Note that the first package described here is
actually implemented so as to be usable in Tcl
8.5, whereas the other two both require Tcl 8.6.

Simple REST Interface
Representational State Transfer[2] (or REST) is
a way of providing services over the web in a
way that works well with the fundamental ar-
chitecture of the web. In particular, it focuses
on the use of standard HTTP verbs[3] (includ-
ing whether or not they are supposed to be
idempotent) and resources characterized by
URLs that can be retrieved in multiple formats
(with content negotiation to decide which for-
mat to use). For example, a collection of pizzas
might be represented by the URL
http://example.org/pizzas, that you
would do a normal GET of to get a list of URLs
as some format like HTML, XML, JSON,
YAML, Tcl list, S-expression, etc. A URL such
as http://example.org/pizzas/pepper-
oni would represent each pizza on the list, and
you would be able to GET that URL to get a
detailed description of the pizza and remove the

pizza from the list by doing a DELETE on the
URL. A pizza of known name would be created
or altered by doing a PUT on its URL, or a
POST could be done on the collection of pizzas
to create a new one (of the chef’s choice); the
response would be an HTTP redirect to the
newly created pizza.

There are many ways to interact naturally with
a REST web service – it is even feasible to just
treat one as a collection of plain web pages –
but the standard Tcl http package does not make
this particularly easy. Key things like handling
of HTTP verbs, redirects and content negotia-
tion are concealed behind an interface that both
conceals critical features and reveals much of
its implementation. That’s where my REST
support code comes in.

Code and Discussion
It simply consists of a TclOO class that pro-
vides methods that implement each of the
common HTTP verbs required for RESTful
service interaction (GET, PUT, POST and DE-
LETE). These methods in turn delegate their
behaviour to a worker method that takes care of
the nitty gritty details of things like redirec-
tions. It also makes it much easier to specify an
alternate preferred set of content types for a
particular request (e.g., so you could get a di-
rectory either as a listing of its contents or as a
zipped archive).

For the GET method, since it is common to not
provide an entity with this method, it does a
join on the arguments provided with “/” as a
separator, adding these on to the base URL set

in the constructor. This is then passed straight
on to the fundamental DoRequest method,
which is a bounded loop that performs basic
requests using the standard http library until
success or a recoverable failure is reached. The
actual decision of what to do about a particular
redirect is taken by another method, OnRe-
direct.

method DoRequest {method url {type ""} {value ""}} {
 for {set reqs 0} {$reqs < 5} {incr reqs} {
 if {[info exists tok]} {
 http::cleanup $tok
 }
 set tok [http::geturl $url -method $method \
 -type $type -query $value]
 if {[http::ncode $tok] > 399} {
 set msg [my ExtractError $tok]
 http::cleanup $tok
 return -code error $msg
 } elseif {[http::ncode $tok] > 299
 || [http::ncode $tok] == 201} {
 try {
 set location [dict get [http::meta $tok] Location]
 } on error {} {
 http::cleanup $tok
 error "missing a location header!"
 }
 my OnRedirect $tok $location
 } else {
 set s [http::data $tok]
 http::cleanup $tok
 return $s
 }
 }
 error "too many redirections!"
}

method OnRedirect {tok location} {
 upvar 1 url url
 set url $location
 # By default, GET doesn't follow redirects; the next
 # line would change that...
 ###return -code continue
 set where $location
 set len [string length "$base/"]
 if {[string equal -length $len $location "$base/"]} {
 set where [string range $where $len end]
 return -level 2 [split $where "/"]
 } else {
 return -level 2 $where
 }
}

method ExtractError {tok} {
 return [http::code $tok],[http::data $tok]
}

With the aid of the above methods, the defini-
tion of the general method for handling GET
requests is just this:

method GET args {
 return [my DoRequest GET $base/[join $args "/"]]
}

The equivalent for other HTTP verbs is very
similar, though with additional arguments de-
fined due to the need to control how values are
uploaded.

Usage
In subclasses of this general REST support
class, I can just do a read/write accessor method
like this:

method status {{status ""}} {
 if {$status eq ""} {
 return [my GET status]
 }
 my PUT status text/plain $status
 return
}

You don’t get much easier than that without
adding in code to directly work with a WADL
file published by the service, and that’s not so
commonly published for REST services.

This was used to rapidly prototype an interface
for a service I was developing. That service had
a very large service API (42 methods, most of
which have renderings as both SOAP and
REST styles simultaneously) so the use of a
testing tool was vital. While I already had an
existing (non-Tcl) infrastructure for checking
the SOAP interface1, I needed something I
could work with for the REST interface. In par-
ticular, I needed to be able to build things up
piece-by-piece so I could check what I was
doing as I was doing it. By turning a reason-
ably complex sequence of operations with the
http package into a simple method call, it made

1 I also uncovered a few problems with the Tcl-
WS[4] packages, subsequently fixed of course, when
trying to do this in Tcl.

it much easier for me to focus on the debugging
of my service and it also allowed me to very
rapidly throw up a GUI (thanks, Tk!) for the
purposes of demonstration.

Object Relational Mapping
When a database is used with Tcl, it is most
common to do this by simply issuing SQL quer-
ies and statements to the database using one of
the many existing interfaces. Indeed, TDBC[5]
is a standardization of these interfaces to pro-
mote best practices in database access so that it
can become easier to write cross-platform code
that works with many databases. However,
using such interfaces still requires the script
author to understand SQL[6]. One way to relax
this requirement is to map a database as a col-
lection of classes and objects; the classes cor-
respond approximately to the tables in the data-
base schema and the objects to the rows in
those tables. This is a common approach in
many languages[7][8][9], especially where
there are strict static types, and often involves a
complex compilation step that generates the
classes and queries from the database. But I
wanted to see how much I could do in an en-
tirely dynamic way while leveraging TclOO
and TDBC to do the difficult parts for me. It
turns out you can do a lot!

I opted in this work to make objects that re-
flected the database rather than the reverse, this
being driven largely by the fact that databases
tend to have more detailed information about
relationships between tables and columns (plus
the types of the columns) than is actually re-
quired for Tcl. After all, Tcl is quite happy with
almost anything as a value. Because of this, my
aim is to have a package of TclOO classes such
that it could be told to attach to a TDBC data-
base connection and have a class created for
each (non-metadata) table. Constructors would
correspond to the use of SQL queries or inserts,
and individual columns would map to methods
that read and write the values inside the corres-
ponding columns. There is an explicit one-to-
one mapping between table names and class
names, and between the names of columns and
methods; the unexposed support methods have
names that it is wholly unreasonable to use as
column names.

Code and Discussion
The ORM package is composed of four classes
that represent the overall database, a table in
that database, and two that represent different
types of row.

Figure 1: ORM class diagram

Figure 1 shows how the classes related to each
other (the standard TclOO classes are included
in green for clarity). The blue links indicate in-
heritance, and the black links indicate where
one class is responsible for creating instances of
another.

The Database class encapsulates the whole
database, or rather the TDBC connection, and it
acts as a collection of tables. It also generates
the particular table classes with the help of
introspection on the database.

oo::class create ORM::Database {
 variable db tableClasses dying
 self {
 variable classes
 method ClassFor {category default {class ""}} {
 if {$class ne ""} {
 set classes($category) $class
 } elseif {![info exists classes($category)]} {
 return $default
 }
 return $classes($category)
 }
 forward classOfTables \
 my ClassFor table ::ORM::Table
 forward classOfNamedRows \
 my ClassFor namedRow ::ORM::NamedRow
 forward classOfAnonRows \
 my ClassFor anonRow ::ORM::AnonRow
 }
 constructor {databaseHandle} {
 set db $databaseHandle
 oo::objdefine [self] export GetRowClass

 $db transaction {
 dict for {table ?} [$db tables] {
 dict set tableClasses $table \
 [my MakeAMappedTable $table]
 }
 }
 oo::objdefine [self] unexport GetRowClass
 }
 destructor {
 set dying "dying"
 foreach tbl $tableClasses {$tbl destroy}
 }
 method transaction script {
 $db transaction {uplevel 1 $script}
 }
 method tables {} {
 dict keys $tableClasses
 }
 method table {table args} {
 if {![llength $args]} {
 return [dict get $tableClasses $table]
 }
 tailcall [dict get $tableClasses $table] {*}$args
 }
 method MakeAMappedTable {table} {
 [[self class] classOfTables] create $table \
 [self] $db $table
 }
 method GetRowClass {type} {
 [self class] classOf${type}Rows
 }
}

The Table class is the core of the ORM package
as it contains almost all of the complexity. In
particular, the constructor uses introspection on
the underlying database table to discover not
just the collection of columns, but also their
natures. Unlike most object-relational mapping
technologies, we do not need to do much to
handle the types of the columns (though the
current prototype does ignore SQL NULLs) but
the nature of columns is still important because
it is important to use primary key and foreign
key information to manage the mapping be-
tween tables; that enables the transparent fol-
lowing of links between tables, coupling row
objects together smoothly. (This sample code
omits much to keep things short.)

oo::class create ORM::Table {
 superclass oo::class
 variable db dbHandle table sql id2obj idColumn \
 columns foreignKeyMap
 constructor {mappedDB connection tableName} {

 set db $mappedDB
 set dbHandle $connection
 set table $tableName
 set pkinfo [$connection primarykeys $table]
 set fkinfo [$connection foreignkeys -foreign $table]
 if {[llength $pkinfo] == 1} {
 set idColumn \
 [dict get [lindex $pkinfo 0] columnName]
 oo::define [self] superclass \
 [$db GetRowClass Named]
 } else {
 set idColumn ""
 oo::define [self] superclass \
 [$db GetRowClass Anon]
 }
 array set id2obj {}
 dict for {c info} [$connection columns $table] {
 if {$c eq $idColumn} {
 set name "ORM.Access.ID"
 set target {}
 } else {
 lappend columns $c
 set target [my GetFKTarget $fkinfo $c]
 if {[llength $target]} {
 set name "ORM.Access.Linked"
 lassign $target targetTable targetKey
 dict set foreignKeyMap $c $target
 } else {
 set name "ORM.Access.Simple"
 set sql(update,$c) \
 [my MakeUpdateOfRowColumn $c]
 }
 }
 oo::define [self] forward $c my $name $c {*}$target
 oo::define [self] export $c
 }
 set sql(query,all) [my MakeQueryForAllRows]
 if {$idColumn ne ""} {
 set sql(query,byID) \
 [my MakeQueryForRowByIdentifier]
 # etc...
 }
 }
 unexport create new
 method GetFKTarget {descriptor sourceColumn} {
 foreach fkDesc $descriptor {
 dict with fk {
 if {$foreignColumn eq $sourceColumn} {
 return [list $primaryTable $primaryColumn]
 }
 }
 }
 }
 method MakeQueryForRowByIdentifier {} {
 format {SELECT * FROM "%s" WHERE "%s" = :id} \
 $table $idColumn

 }
 # etc...
 method findById {id} {
 if {![info exist id2obj($id)]} {
 $dbHandle foreach -as dicts $sql(query,byID) row {
 set id2obj($id) [my MakeRowForId $row $id]
 break
 }
 }
 return $id2obj($id)
 }
 method foreach {varName script} {
 upvar 1 $varName v
 $dbHandle foreach -as dicts $sql(query,all) row {
 set id [dict get $row $idColumn]
 if {![info exists id2obj($id)]} {
 set id2obj($id) [my MakeRowForId $row $id]
 }
 set v $id2obj($id)
 uplevel 1 $script
 }
 }
 method MakeRowForId {rowDictionary identity} {
 tailcall my new [namespace which my] \
 $rowDictionary $identity
 }
 method MakeRowWithoutId {rowDictionary} {
 tailcall my new [namespace which my] $rowDictionary
 }
 method mappedDB {args} {
 if {![llength $args]} {return $db}
 tailcall $db {*}$args
 }
}

Database rows are represented by subclasses of
the two row classes. One is for rows where we
have a mapped identity, and the other is for
rows where that was not possible (e.g., because
the primary key consists of multiple columns). I
show just one of these classes here; the other is
a stripped-down version of it.

oo::class create ORM::NamedRow {
 variable contents tbl id
 constructor {table row identity} {
 array set contents $row
 set tbl $table
 set id $identity
 }
 destructor {
 $tbl RemoveRow $id
 }
 method ORM.writeback {column value} {
 tailcall $tbl SetRowColumn $id $column $value
 }

 method ORM.Access.Simple {c args} {
 if {[llength $args]} {
 lassign $args value
 set contents($c) [my ORM.writeback $c $value]
 }
 return $contents($c)
 }
 method ORM.Access.Linked {c targTbl targCol args} {
 if {[llength $args]} {
 lassign $args value
 # Error checking elided for clarity
 set cls [$tbl mappedDB table $targTbl]
 set otherId [set [info object namespace $value]::id]
 set contents($c) [my ORM.writeback $c $otherId]
 return [$cls findById $contents($c)]
 }
 $tbl mappedDB table $targTbl \
 findById $contents($c)
 }
 method ORM.Access.ID {c} {
 return $contents($c)
 }
}

Usage
To show how this mapping might be used, let
us consider a simple order database. Each order
has its ID, of course, and a description of the
order, and it also has references to the customer
who is paying for the order and where it is to be
dispatched to. They are linked as in Figure 2.

Figure 2: Order dispatch database schema

Specifically, this table definition is used for this
example:

CREATE TABLE customers(
 id INTEGER PRIMARY KEY,
 firstname TEXT,

 surname TEXT)
CREATE TABLE dispatch(
 id INTEGER PRIMARY KEY,
 house INTEGER,
 street TEXT,
 city TEXT,
 state TEXT)
CREATE TABLE "order"(
 id INTEGER PRIMARY KEY,
 customer INTEGER NOT NULL,
 dispatch INTEGER NOT NULL,
 description TEXT,
 CONSTRAINT fk_customer
 FOREIGN KEY (customer)
 REFERENCES customers(id)
 ON DELETE CASCADE,
 CONSTRAINT fk_dispatch
 FOREIGN KEY (dispatch)
 REFERENCES dispatch(id)
 ON DELETE CASCADE)

To print out a listing of the contents of this
(admittedly very simple) database with ORM,
you would just need to write code like this:

set conn [tdbc::sqlite3::connection new "mydb.sqlite3"]
ORM::Database create db $conn
db table order foreach ordr {
 puts "Order #[$ordr id]"
 puts "Customer: [[$ordr customer] firstname]\
 [[$ordr customer] surname]"
 puts "Address: [[$ordr dispatch] house]\
 [[$ordr dispatch] street]"
 puts "Address: [[$ordr dispatch] city],\
 [[$ordr dispatch] state]"
 puts "Description:\n\t[$ordr description]"
 puts ""
}

The fact that the order class’s customer and dis-
patch methods both return objects on queries is
deduced automatically from inspection of the
foreign key constraints, together with the way
that they map to primary key columns in the
other tables.

Annotations
The third of these short “adventures” is into
adding metadata to TclOO classes through an-
notations. The aim of this is to allow all de-
clarations in a class, together with the overall
class itself, to have extra information added to
them that was not originally envisaged as part
of the TclOO specification. The key goal of this
is to allow the definition of new annotations

simply by creating an appropriate subclass (the
instances of the class being created automati-
cally during the annotation process).

The inspiration for this is the annotation
mechanisms present in Java[10], C#[11] and
Python[12], where they serve many purposes.
However, I have not focussed on adding anno-
tations to overall individual objects so far be-
cause of the wider variety of ways in which ob-
jects are created in practice, relative to classes.

Code and Discussion
The core of the annotation system is an array in
the package’s namespace that maps from class
names to the collection of annotations on things
related to that class. That collection is imple-
mented as a dictionary (keyed by the name of
the annotation) to a list of annotation objects
with that name on that class.

A lookup command is provided to search the
collection of annotations; this command is inte-
grated into Tcl’s info command:

proc oo::InfoClass::annotations {
 class {annotation ""} args} {
 upvar #0 ::oo::Annotations::classInfo info
 set class [uplevel 1 [list namespace which $class]]
 if {$annotation eq ""} {
 if {![info exists info($class)]} return
 return [dict keys $info($class)]
 } elseif {
 ![info exists info($class)]
 || ![dict exists $info($class) $annotation]
 } then {
 return -code error \
 "unknown annotation \"$annotation\""
 }
 set result {}
 foreach h [dict get $info($class) $annotation] {
 try {
 $obj describe result {*}$args
 } on error msg {
 return -code error $msg
 }
 }
 return $result
}

Insertion of an annotation into the array is done
by the combination of a unknown-command
handler that builds the annotation when neces-
sary, and rewritten versions of the definition
commands that add in the current accumulated

annotation set to the array once it is determined
what the annotations actually apply to.

The unknown handler is this:

proc DefineUnknown {cmd args} {
 if {[string match @* $cmd]} {
 try {
 variable subject [lindex [info level -1] 1]
 variable currentAnnotators
 lappend currentAnnotators \
 [Annotation.[string range $cmd 1 end] new \
 "class" {*}$args]
 return
 } on error msg {
 return -code error $msg
 }
 }
 # Use some knowledge of how TclOO really works...
 tailcall ::oo::UnknownDefinition $cmd {*}$args
}
namespace eval ::oo::define [list namespace unknown \
 [namespace which DefineUnknown]]

The definition commands are spliced like this:

namespace eval RealDefines {}
apply [list {} {
 foreach cmd [info commands ::oo::define::*] {
 set tail [namespace tail $cmd]
 set target ::oo::Annotations::RealDefines::$tail
 rename $cmd $target
 proc $cmd args "
 ::oo::Annotations::ClassDefinition $tail {*}\$args
 tailcall [list $target] {*}\$args
 "
 }
} [namespace current]]

This is supported by the ClassDefinition pro-
cedure:

proc ClassDefinition {operation args} {
 variable currentAnnotators
 if {![info exists currentAnnotators]} return
 variable subject
 variable classInfo
 try {
 foreach a $currentAnnotators {
 set name [$a name]
 $a register $operation {*}$args
 if {
 ![info exists classInfo($subject)]
 || ![dict exists $classInfo($subject) $name]
 } then {
 dict set classInfo($subject) $name {}
 }

 dict lappend classInfo($subject) $name $a
 set currentAnnotators \
 [lrange $currentAnnotators 1 end]
 }
 } on error msg {
 foreach a $currentAnnotators {$a destroy}
 return -level 2 $msg
 } finally {
 unset currentAnnotators
 }
}

The final part of the annotation package is the
base annotation classes themselves.

::oo::class create annotation {
 unexport create
 variable annotation Type Operation
 constructor {type args} {
 set Type $type
 my MayApplyToType $type
 my RememberAnnotationArguments $args
 }
 method MayApplyToType type {
 throw ANNOTATION \
 "may not apply this annotation to that type"
 }
 method MayApplyToOperation operation {
 throw ANNOTATION \
 "may not apply that annotation to this operation"
 }
 method RememberAnnotationArguments values {
 set annotation $values
 }
 method QualifyAnnotation args {
 # Do nothing by default
 }
 method name {} {
 set name [namespace tail [info object class [self]]]
 return [regsub {^Annotation.} $name @]
 }
 method register {operation args} {
 set Operation $operation
 my MayApplyToOperation $operation
 my QualifyAnnotation {*}$args
 }
 method describe {varName} {
 upvar 1 $varName v
 lappend v $annotation
 }
}
::oo::class create classannotation {
 superclass annotation
 method MayApplyToType type {
 if {$type ne "class"} {next $type}

 }
}

A major class of annotations are those that are
used to provide simple descriptions of parts of a
class definition. To support this basic use, a
class of annotations that are such descriptions is
also given:

oo::class create Annotation.Describe {
 superclass oo::Annotations::classannotation
 variable annotation Operation method
 method MayApplyToOperation operation {
 if {$operation ni "method forward constructor"} {
 next $operation
 }
 }
 method QualifyAnnotation {name args} {
 if {$Operation eq "constructor"} {
 set method "<<constructor>>"
 } else {
 set method $name
 }
 }
 method describe {varName {name ""}} {
 upvar 1 $varName result
 if {[llength [info level 0]] == 3} {
 dict set result $method [join $annotation]
 } elseif {$method eq $name} {
 set result [join $annotation]
 return -code break
 }
 }
}

Usage
To use the annotations now, all you would need
to do is put them on the definition, like this:

oo::class create foo {
 @Describe This method simply prints its arguments
 method bar args {puts $args}
}

After that, the annotation would be read by just
using the introspection mechanism:

puts annotations:\t[info class annotation foo]
puts describe:\t[info class annotation foo @Describe bar]

Which would print out this:

annotations: @Describe
describe: This method simply prints its arguments

The second could have been written without the
final “bar” argument, in which case it would

have returned a dictionary with one entry for
each method it applied to.

Just subclassing the Describe annotation class
creates specialist types of description. For ex-
ample, to create one just for describing side ef-
fects you might do this:

oo::class create Annotation.SideEffects {
 superclass Annotation.Describe
}

We can do the same for results, except that this
time we do not want them to apply to construc-
tors (where the result is ignored if it isn’t an
error):

oo::class create Annotation.Result {
 superclass Annotation.Describe
 method MayApplyToOperation operation {
 if {$operation eq "constructor"} {
 throw ANNOTATE "not on a constructor"
 }
 next $operation
 }
}

Annotations can also be extended so they can
refer to individual arguments to a method:

oo::class create Annotation.Argument {
 superclass Annotation.Describe
 variable annotation method argument
 constructor {type argName args} {
 set argument $argName
 next $type {*}$args
 }
 method describe {varName {name ""} {argname ""}} {
 upvar 1 $varName result
 if {[llength [info level 0]] == 3} {
 lappend result $method
 } elseif {$method eq $name} {
 if {[llength [info level 0]] == 4} {
 lappend result $argument
 } elseif {$argument eq $argname} {
 set result [join $annotation]
 return -code break
 }
 }
 }
}

These are applied in a completely analogous
way:

oo::class create foo2 {
 @Describe This has many annotations attached

 @Argument x Ignored.
 @Argument args To allow any number of arguments
 @Result None.
 @SideEffects Prints to stdout.
 method bar {x args} { puts foo }
}

If we introspect simply, we get a list of all the
annotations that are present:

puts [info class annotation foo2]

This will print:

@Describe @Argument @Result @SideEffects

Future Work
I would like to be able to work further on the
REST package so that it is better able to handle
supporting the wide range of RESTful APIs
found out there. In particular, the current http
package creaks at the seams rather when
pressed into use for this as it makes a number of
assumptions that do not hold when dealing with
APIs for computer consumption rather than for
human consumption.

For the ORM package, I think it needs some
more work so that it becomes even more natural
to use before it can be considered suitable for
use. In particular, there are problems with
whether a row should be deleted when its cor-
responding object is destroyed, and also with
just how eagerly objects should be created to
represent database rows. After all, the aim is to
make working with an existing database as
natural as working with Tcl.

The annotations work is interesting and may
lead to new things being added to TclOO in the
future, though it is (as of the time of writing)
significantly incomplete in that it is very awk-
ward to create class-level annotations. This is a
consequence of the fact that interceptors for the
annotations are all hooked off the TclOO defi-
nition subsystem. It’s also arguably the case
that the axes on which annotations are currently
looked up are in the wrong order (currently the
order is class, annotation name, method name,
etc). Some work is clearly needed in this area.

The interesting thing that can be learned from
other languages though is that using annotations
can lead to an interesting way for a system of

objects to interact with a framework such as a
web front end or GUI. This is an area where I
feel I have only scratched the surface.

References
[1] Fellows, D. et al, TIP #257: Object Orientation for

Tcl, in Tcl Improvement Proposal series, Tcl Core
Team, 2005–2008.

[2] Fielding, R., Taylor, R., Architectural styles and the
design of network-based software architectures,
University of California, Irvine, CA, 2000.

[3] Fielding, R. et al, RFC 2616: Hypertext Transfer
Protocol – HTTP/1.1, in IETF Requests for Com-
ments series, The Internet Society, 1999.

[4] Lester, G. et al, Web Services for Tcl package,
hosted on Google Code at http://code.googl-
e.com/p/tclws/, 2006–2010.

[5] Kenny, K. et al, TIP #308: Tcl Database Connec-
tivity (TDBC), in Tcl Improvement Proposal series,
Tcl Core Team, 2007–2008.

[6] Date, C., A guide to the SQL standard, Addison-
Wesley, Boston, MA, 1986.

[7] Bauer, C., King, G., Java Persistence with Hiber-
nate, Manning, Greenwich, CT, 2006.

[8] Roos, R., Java Data Objects, in Computing Re-
views, vol. 45, no. 4, pp. 202, 2004

[9] Bächle, M., Kirchberg, P., Ruby on Rails, in IEEE
Software, vol. 24, pp. 105–108, IEEE Computer
Society, Los Alamitos, CA, 2007.

[10] Buckley, A. et al, JSR 175: A Metadata Facility for
the JavaTM Programming Language, in Java Specifi-
cation Requests, 2002–2004.

[11] Gunnerson, E., A Programmer’s Introduction to C#,
Second Edition, Springer, New York, NY, 2001.

[12] Smith, K. et al, PEP 318: Decorators for Functions
and Methods, in Python Enhancement Proposals se-
ries, Python Software Foundation, 2003–2004.

