
Adventures in
TclOO
or, Here’s Some Tricks I’ve Been Up To

Donal Fellows
University of Manchester / Tcl Core Team

Outline

  A Quick TclOO Refresher

  Support Class for REST

  Wrapping TDBC with ORM

  Extending TclOO with Annotations

  Where to go in the Future

2

Refresher
A Quick TclOO…

3

TclOO Refresher

  Object System
  Incorporated in 8.6, Package for 8.5

  Designed for
  Keeping Out of Your Way
  Being Tcl’ish and Dynamic
  Being Powerful and Extensible

  Key Features
  Single-Rooted Inheritance Hierarchy
  Classes are Objects and May be Extended
  Object’s Namespace contains Object’s Variables
  Class (Re-)Definition by Separate Command

4

The Anatomy Lesson

oo::object

Namespace

Method
Table

Mixin
List

Variables
NS Path

Commands

Instance
Method

Table

Mixin
List

Superclass List

oo::class

An object
has these
things…

A class also
has these,

which apply
to instances

Classes are objects
Objects are

made by
classes

You can subclass the class of
classes for custom construction 5

REST
Support Class for…

REpresentational State Transfer

  REST is Way of Doing Web Services
  Popular

  Easy to Use in Ad Hoc Way

  Strongly Leverages HTTP
  Verbs are GET, PUT, DELETE, POST, …

  Nouns are Resources with URLs

  View of Resources Determined by Content
Negotiation

7

Example…

  http://example.org/pizzas is a Pizza Parlor

  GET http://example.org/pizzas
  Returns Current List of Pizzas

  GET http://example.org/pizzas/123
  Returns Description of Pizza #123

  GET http://example.org/pizzas/123/pepperoni
  Returns Amount of Pepperoni on Pizza

8

Example… Updates

  PUT http://example.org/pizzas/123/pepperoni
  Sets Amount of Pepperoni on Pizza #123
  Idempotent

  POST http://example.org/pizzas
  Makes a New Pizza from Scratch

  Request document says what to make

  Redirects to Created Pizza

  DELETE http://example.org/pizzas/123
  Gets Rid of Pizza #123
  Idempotent

9

REST Class

  TclOO Class
  Wrapper for http package

  Models a Base Resource

  Methods for Each HTTP Verb

  Designed to be Subclassed!

  Some Production Use
  Testing Interface for Very Complex REST Service

  More than 35 Operations with non-fixed URLs
  Still Growing…

10

General Plan

oo::object

Service Instance Service Instance Service Instance

oo::class

REST

Specific Service

11

Code (Simplified)

method DoRequest {
 method url {type ""} {value ""}} {

 for {set rs 0} {$rs < 5} {incr rs} {
 set tok [http::geturl $url \
 -method $method \
 -type $type -query $value]

 try {
 if {[http::ncode $tok] > 399} {
 # ERROR
 set msg [my ExtractError $tok]
 return -code error $msg

 } elseif {[http::ncode $tok] > 299
 ||[http::ncode $tok]==201} {
 # REDIRECT
 try {
 set location [dict get \
 [http::meta $tok] Location]
 } on error {} {

 error "missing location!"
 }
 my OnRedirect $tok $location

 } else {
 # SUCCESS
 return [http::data $tok]
 }
 } finally {
 http::cleanup $tok
 }
 }
 error "too many redirections!"

}

method GET args {
 return [my DoRequest GET \
 $base/[join $args "/"]]
}

12

Usage

oo::class create Service {
 superclass REST
 # … etc …

 method status {{status ""}} {
 if {$status eq ""} {
 return [my GET status]
 }
 my PUT status text/plain $status
 return
 }
}

13

Bioscience
Services Bioscience

Services Bioscience
Services

What I Was Using This For
Workflow Server

W
e

b

Fr
o

n
t

En
d

Database Filesystem

Heliophysics
Services Heliophysics

Services Heliophysics
Services

Chemistry
Services Chemistry

Services Chemistry
Services

Workflow

Workflow Workflow

Taverna 2 Server

Taverna
Engine

Taverna
Engine

Taverna
Engine Testing

This Part

14

ORM
Wrapping TDBC with…

Object-Relational Mapping

  Objects are Natural Way to Model World
  Well, much of it…

  Relational Databases are Excellent at Managing
Data

  Build Links between Objects and Databases
  Many Languages Have Them

  Java, C#, Ruby, …

  Wanted to do in Tcl
  Leverage TclOO and TDBC

16

Data First or Objects First?

  Data First
  Data is already in the database

  How to introspect database’s structure

  How to represent naturally as objects

  Objects First
  Data is in objects

  How to construct database to store and restore

  My ORM Package is Data First
  Dynamic class construction!

17

Basic Class Plan

oo::object oo::class

Database Table

NamedRow AnonRow

Instance
makes
instance

subclass

18

CRM DB

Interaction Plan

Database

Table

NamedRow

Order

Descn CustID DispID

Customer

FirstName Surname

Dispatch

ID House Street City

ID

ID

State

crmdb

or
de

r
or

de
r#

42

cu
st

om
er

di
sp

at
ch

cu
st

om
er

#7

di
sp

at
ch

#9

Introspects DB

Columns go to properties
Foreign keys make
inter-object links

Class per table

Instance per row

19

Example of Use
Connect to Database with TDBC
set conn [tdbc::sqlite3::connection new "mydb.sqlite3"]

Create all the classes holding the mapping
ORM::Database create db $conn

Illustrate use by printing out all orders
db table order foreach ordr {
 puts "Order #[$ordr id]"
 puts "Customer: [[$ordr customer] firstname]\
 [[$ordr customer] surname]"
 puts "Address: [[$ordr dispatch] house]\
 [[$ordr dispatch] street]"
 puts "Address: [[$ordr dispatch] city],\
 [[$ordr dispatch] state]"
 puts "Description:\n\t[$ordr description]"
 puts ""
}

20

Annotations
Extending TclOO with…

What is an Annotation?

  Additional Arbitrary Metadata
  Attached to Class or Part of Class

  User-Defined Purpose
  Easy way to add information without doing big

changes to TclOO’s C implementation

  Uses from Other Languages
  Documentation

  Constraints

  Coupling to Container Frameworks
  Persistence, Web Apps, Management, …

22

Annotation Syntax

@SomeAnnotation -foo bar
oo::class create Example {

 @AnotherAnnotation
 variable x

 @GuessWhatThisIs
 constructor {} { … }

 @HowAboutThis?
 @More…
 method xyzzy {x y} { … }
}

To read the annotations…
puts [info class annotation Example]

23

Types of Annotations

  Annotations Specify What They Attach To
  Classes

  Methods

  Any declaration…

  Examples
  @Description

  @Argument

  @Result

  @SideEffect

24

Declaring an Annotation

oo::class create Annotation.Argument {
 superclass Annotation.Describe
 variable annotation method \
 argument

 # Save what argument this applies to
 constructor {type argName args} {
 set argument $argName
 next $type {*}$args
 }

 # How an annotation is introspected
 method describe {v {n ""} {an ""}} {
 upvar 1 $v result
 if {[llength [info level 0]] == 3} {
 lappend result $method

 return
 }
 if {$method ne $n} {
 return
 }
 if {[llength [info level 0]] == 4} {
 lappend result $argument
 return
 } elseif {$argument eq $a} {
 set result [join $annotation]
 return -code break
 }
 }
}

25

Under the Hood

  Every Class has List of Annotations Applied to it

  Attaching to Classes
  Uses Standard Unknown Handler
  Rewrites oo::class Command

  Attaching to Declarations
  Rewrites Whole TclOO Declaration System

  Change Declaration
  Local Unknown Handler

  Adding Introspection
  Extra commands in [info class] via ensemble

26

Under the Hood

TclOO Package Annotation Package

oo::class

oo::define

[info class]

interceptor

interceptors

extensions

Annotation
Class

Annotation
Store

M
e

d
d

le
s

w
ith

 in
te

rn
a

ls

27

Future?
Where to go in the

Future of REST Class

  Contribute to Tcllib

  Needs More Features First
  Authentication Support

  Cookie Handling

  WADL Parser
  Well, maybe…

29

Future of ORM

  Much Work Needed
  What is natural way to handle object deletion?

  What is best way to handle complex keys?

  What is best way to bring in objects?

  What sort of cache policy should be used?

  Support Object-First Style
  With annotations?

30

Future of Annotations

  Too Hard to Declare
  Far too much work!

  Introspection Axes Wrong
  Current code uses very unnatural order

  Add to TclOO?
  Depends on issues being resolved

  Find Cool Things to Do, e.g…
  Augment ORM?
  Ways of creating server-side REST bindings

31

