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Refresher 
A Quick TclOO… 
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TclOO Refresher 

  Object System 
  Incorporated in 8.6, Package for 8.5 

  Designed for 
  Keeping Out of Your Way 
  Being Tcl’ish and Dynamic 
  Being Powerful and Extensible 

  Key Features 
  Single-Rooted Inheritance Hierarchy 
  Classes are Objects and May be Extended 
  Object’s Namespace contains Object’s Variables 
  Class (Re-)Definition by Separate Command 
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The Anatomy Lesson 

oo::object 

Namespace 

Method 
Table 

Mixin 
List 
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NS Path 

Commands 

Instance
Method 

Table 

Mixin 
List 

Superclass List 

oo::class 

An object 
has these 
things… 

A class also 
has these, 

which apply 
to instances 

Classes are objects 
Objects are 

made by 
classes 

You can subclass the class of 
classes for custom construction 5 



REST 
Support Class for… 



REpresentational State Transfer 

  REST is Way of Doing Web Services 
  Popular 

  Easy to Use in Ad Hoc Way 

  Strongly Leverages HTTP 
  Verbs are GET, PUT, DELETE, POST, … 

  Nouns are Resources with URLs 

  View of Resources Determined by Content 
Negotiation 
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Example… 

  http://example.org/pizzas is a Pizza Parlor 

  GET http://example.org/pizzas 
  Returns Current List of Pizzas 

  GET http://example.org/pizzas/123 
  Returns Description of Pizza #123 

  GET http://example.org/pizzas/123/pepperoni 
  Returns Amount of Pepperoni on Pizza 
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Example… Updates 

  PUT http://example.org/pizzas/123/pepperoni 
  Sets Amount of Pepperoni on Pizza #123 
  Idempotent 

  POST http://example.org/pizzas 
  Makes a New Pizza from Scratch 

  Request document says what to make 

  Redirects to Created Pizza 

  DELETE http://example.org/pizzas/123 
  Gets Rid of Pizza #123 
  Idempotent 
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REST Class 

  TclOO Class 
  Wrapper for http package 

  Models a Base Resource 

  Methods for Each HTTP Verb 

  Designed to be Subclassed! 

  Some Production Use 
  Testing Interface for Very Complex REST Service 

  More than 35 Operations with non-fixed URLs 
  Still Growing… 
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General Plan 

oo::object 

Service Instance Service Instance Service Instance 

oo::class 

REST 

Specific Service 

11 



Code (Simplified) 

method DoRequest { 
      method url {type ""} {value ""}} { 

   for {set rs 0} {$rs < 5} {incr rs} { 
      set tok [http::geturl $url \ 
            -method $method \ 
            -type $type -query $value] 

      try { 
         if {[http::ncode $tok] > 399} { 
            # ERROR 
            set msg [my ExtractError $tok] 
            return -code error $msg 

         } elseif {[http::ncode $tok] > 299 
               ||[http::ncode $tok]==201} { 
            # REDIRECT 
            try { 
               set location [dict get \ 
                   [http::meta $tok] Location] 
            } on error {} { 

               error "missing location!" 
            } 
            my OnRedirect $tok $location 

         } else { 
            # SUCCESS 
            return [http::data $tok] 
         } 
      } finally { 
         http::cleanup $tok 
      } 
   } 
   error "too many redirections!" 

} 

method GET args { 
   return [my DoRequest GET \ 
         $base/[join $args "/"]] 
} 
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Usage 

oo::class create Service { 
     superclass REST 
     # … etc … 

     method status {{status ""}} { 
          if {$status eq ""} { 
               return [my GET status] 
          } 
          my PUT status text/plain $status 
          return 
     } 
} 
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Bioscience 
Services Bioscience 

Services Bioscience 
Services 

What I Was Using This For 
Workflow Server 
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Database Filesystem 

Heliophysics 
Services Heliophysics 

Services Heliophysics 
Services 

Chemistry 
Services Chemistry 

Services Chemistry 
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Workflow 

Workflow Workflow 

Taverna 2 Server 
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Engine Testing 

This Part 
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ORM 
Wrapping TDBC with… 



Object-Relational Mapping 

  Objects are Natural Way to Model World 
  Well, much of it… 

  Relational Databases are Excellent at Managing 
Data 

  Build Links between Objects and Databases 
  Many Languages Have Them 

  Java, C#, Ruby, … 

  Wanted to do in Tcl 
  Leverage TclOO and TDBC 
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Data First or Objects First? 

  Data First 
  Data is already in the database 

  How to introspect database’s structure 

  How to represent naturally as objects 

  Objects First 
  Data is in objects 

  How to construct database to store and restore 

  My ORM Package is Data First 
  Dynamic class construction! 
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Basic Class Plan 

oo::object oo::class 

Database Table 

NamedRow AnonRow 

Instance 
makes 
instance 

subclass 
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CRM DB 

Interaction Plan 
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Introspects DB 

Columns go to properties 
Foreign keys make 
inter-object links 

Class per table 

Instance per row 

19 



Example of Use 
# Connect to Database with TDBC 
set conn [tdbc::sqlite3::connection new "mydb.sqlite3"] 

# Create all the classes holding the mapping 
ORM::Database create db $conn 

# Illustrate use by printing out all orders 
db table order foreach ordr { 
    puts "Order #[$ordr id]" 
    puts "Customer: [[$ordr customer] firstname]\ 
            [[$ordr customer] surname]" 
    puts "Address: [[$ordr dispatch] house]\ 
            [[$ordr dispatch] street]" 
    puts "Address: [[$ordr dispatch] city],\ 
            [[$ordr dispatch] state]" 
    puts "Description:\n\t[$ordr description]" 
    puts "" 
} 
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Annotations 
Extending TclOO with… 



What is an Annotation? 

  Additional Arbitrary Metadata 
  Attached to Class or Part of Class 

  User-Defined Purpose 
  Easy way to add information without doing big 

changes to TclOO’s C implementation 

  Uses from Other Languages 
  Documentation 

  Constraints 

  Coupling to Container Frameworks 
  Persistence, Web Apps, Management, … 
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Annotation Syntax 

@SomeAnnotation -foo bar 
oo::class create Example { 

    @AnotherAnnotation 
    variable x 

    @GuessWhatThisIs 
    constructor {} { … } 

    @HowAboutThis? 
    @More… 
    method xyzzy {x y} { … } 
} 

# To read the annotations… 
puts [info class annotation Example] 
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Types of Annotations 

  Annotations Specify What They Attach To 
  Classes 

  Methods 

  Any declaration… 

  Examples 
  @Description 

  @Argument 

  @Result 

  @SideEffect 
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Declaring an Annotation 

oo::class create Annotation.Argument { 
   superclass Annotation.Describe 
   variable annotation method \ 
         argument 

   # Save what argument this applies to 
   constructor {type argName args} { 
      set argument $argName 
      next $type {*}$args 
   } 

   # How an annotation is introspected 
   method describe {v {n ""} {an ""}} { 
      upvar 1 $v result 
      if {[llength [info level 0]] == 3} { 
         lappend result $method 

         return 
      } 
      if {$method ne $n} { 
         return 
      } 
      if {[llength [info level 0]] == 4} { 
         lappend result $argument 
         return 
      } elseif {$argument eq $a} { 
         set result [join $annotation] 
         return -code break 
      } 
   } 
} 
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Under the Hood 

  Every Class has List of Annotations Applied to it 

  Attaching to Classes 
  Uses Standard Unknown Handler 
  Rewrites oo::class Command 

  Attaching to Declarations 
  Rewrites Whole TclOO Declaration System 

  Change Declaration 
  Local Unknown Handler 

  Adding Introspection 
  Extra commands in [info class] via ensemble 
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Under the Hood 
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Future? 
Where to go in the  



Future of REST Class 

  Contribute to Tcllib 

  Needs More Features First 
  Authentication Support 

  Cookie Handling 

  WADL Parser 
  Well, maybe… 
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Future of ORM 

  Much Work Needed 
  What is natural way to handle object deletion? 

  What is best way to handle complex keys? 

  What is best way to bring in objects? 

  What sort of cache policy should be used? 

  Support Object-First Style 
  With annotations? 
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Future of Annotations 

  Too Hard to Declare 
  Far too much work! 

  Introspection Axes Wrong 
  Current code uses very unnatural order 

  Add to TclOO? 
  Depends on issues being resolved 

  Find Cool Things to Do, e.g… 
  Augment ORM? 
  Ways of creating server-side REST bindings 
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