Supporting Embedded Software Development

Doing the Heavy Lifting with Tcl/Tk

Andrew Mangogna
amangogna@modelrealization.com

17th Annual Tcl/Tk Conference
October 13-15, 2010

Copyright

© 2010, by G. Andrew Mangogna. Permission to copy and distribute this article by any means is
granted by the copyright holder provided the work is distributed in its entirety and this notice ap-
pears on all copies.

Abstract

Software development on micro-controller based computing platforms is very challenging due to
minimal computing resources and I/O capabilities. These micro-controller platforms are deployed
widely in areas such as home automation, consumer electronics, automotive and medical devices.
This paper discusses a set of software tools, implemented in Tcl / Tk, that support software code
generation for small embedded micro-controller based systems. The core tool is a program called,
pycca, which is a domain specific language for specifying data structures, data relationships and
finite state machine behavior. The focus of the paper is not on the functionality of pycca but rather
the underlying Tcl technology used to implement the tools. Although it is not possible to run a Tcl
interpreter on small micro-controller based systems, Tcl is a valuable tool used to support the de-
velopment and testing of this class of system. All the programs discussed are available as part of
an open source project.

1. Introduction

This paper is a about a program called, pycca. Pycca is an acronym for Pass Your "C" Code

Along®. Pycca is coded in Tcl and implements a domain specific language that supports generat-
ing "C" code that is useful in building software for highly embedded micro-controller based com-
puting platforms.

The remainder of this section discusses the background and motivation behind pycca. Pycca is
a supporting program for an execution architecture that is appropriate for many types of applica-
tions fielded on small computing platforms. The next section shows how pycca fits into the devel-
opment workflow and shows a simple example.

The remainder of the paper is devoted to the internals of pycca highlighting the Tcl / Tk technol-
ogy that is used in its implementation. Language parsing, internal data structures and semantic
analysis are discussed. The use of relationally structured data is emphasized. The output from
pycca is generated by template expansion and an example of the expansion is shown. Finally,
other programs that use the parsed data that pycca can save are discussed. These programs
provide another set of supporting functionality to help in debugging and visualizing the resulting
software.

1.1. Resources

The software described in this paper is available as an open source project that is licensed in the
same manner as Tcl / Tk itself2.

1.2. An Execution Ar chitecture for Embedded Systems

One very difficult aspect of developing software on a micro-controller is the bare metal aspect of
running that software. There is often no operating system to protect against errant execution.
Many times the computer architecture is so primitive that there is no notion of supervisory execu-
tion. It is important to keep strict control over the data and execution sequencing. To that end, a
well defined execution architecture which controls all the essential aspects of program execution
needs to be in place. The idea is to factor away from the application into a common code base all
the policy decisions about how data is handled and how execution is sequenced.

One can view the execution architecture as a different model of computation that has a higher
level of abstraction. Rather than the traditional view of sequential lines of code where control is
transferred explicitly, the computation model is more along the lines seen in a conventional GUI
program. An event loop, which is not generally seen by the programmer, handles the control
sequencing as events are generated. Events are used to cause transitions in finite state
machines. This is different from the usual event loop that simply maps events to a callback func-
tion. State machines can generate events to other state machines and one very powerful aspect
of the execution model derives from the sequencing of interactions of what are usually small state
machines.

Such an execution architecture is generally applicable to a range of application subject matters
and is only dependent upon the demands the applications make on the computing environment
rather than the details of the application semantics. This is an important distinction. The

! Rest assured that despite a name beginning with py, Python is not involved.

2 http://tcl-cm3.sourceforge.net
Although this project is described as a set of tools for the ARM® Cortex-M3®, the scope is substantially larger than a sin-
gle processor platform.

http://tcl-cm3.sourceforge.net

execution environment tailored for small systems is not universally suitable as it will scale to the
computational requirements of the system only within certain bounds. However, it is not depen-
dent upon the particular subject matter of any application.

1.3. STSA

We describe here a Single Threaded Software Architecture (STSA). As the name implies there is
only a single thread of execution, although interrupts are allowed to preempt that single thread.
This execution architecture encompasses all the policy decisions on how data is managed and
how execution is sequenced.

Although the small memory footprint of micro-controller based platforms means the quantity of
data in these types of systems is small, the data can be of a rather complex organization. For
many of these applications, no system heap is used and all data is managed from fixed, worst
case sized pools. Safety critical systems in particular avoid a global system pool since they tend

to be long running® and the concern is that the heap will fragment over time and the system may
not be able to allocate a critical data structure. Individual memory pools also offer easier alloca-
tion and management but, because the worst case allocation must be accommodated, some-
times do not give the most efficient memory usage.

The STSA also manages the the sequencing of execution. Although conventional multi-tasking
operating environments are sometimes available, they do incur additional unwelcome overhead of
context switching and frequently negatively affect interrupt service latencies. The usual require-
ments for small system applications can also be met by having a means of terminating a compu-
tation and then resuming that computation in response to some other happening. This can be
done using finite state machines techniques that do not require keeping a virtual CPU context and
switching between multiple contexts. Many applications for small systems function perfectly well
using a single threaded, event driven approach to execution sequencing. This model of execution
is analogous to the Tcl event loop with two significant differences.

« The STSA dispatches events to Moore type state machines.* By contrast, the Tcl event loop
binds arbitrary Tcl scripts to the event. STSA has a much tighter set of rules for how execution

is sequenced and supports the execution semantics of Executable UML.®

» The STSA binds the events to application functionality at link time whereas Tcl, naturally
enough, accomplishes this binding at run time. STSA accomplishes the binding by being
completely data driven, requiring a set of data structures be provided by the application. This
has two advantages that are significant in small systems. First, it eliminates a large fraction of
initialization code. For long running systems initialization code is run only once yet still occu-
pies valuable memory space. Second, the paths through the state space of the code are fixed
giving much tighter control over the system execution. Indeed, the entire state space of the
application is determined before run time. This is considered a substantial benefit since tight
control is more desirable than run-time flexibility for these types of systems.

3 An example of a long running system is one that is battery powered, begins to run when the battery is installed
and continues to do so until the battery fails to provide enough energy.

4 http://en.wikipedia.org/wiki/Moore_machine

5 http://en.wikipedia.org/wiki/Executable_UML

See also:
Mellor, Stephen J. and Marc J. Balcer, Executable UML: a foundation for model-driven architecture, Addison-Wesley,
2002, ISBN 0-201-74804-5

and
Raistrick, Chris, Paul Francis, John Wright, Colin Carter and lan Wilkie, Model Driven Architecture with Executable
UML, Cambridge University Press, 2004, ISBN 0-521-53771-1

http://en.wikipedia.org/wiki/Moore_machine

The arguments usually used for event driven versus thread based programming in Tcl apply to
the small system context as well. Preemptive multi-tasking with shared state in a small system
carries with it the same difficulties that it does in larger systems, namely, the extreme, if not
impossible, difficulty of insuring that there is no critical section violation of the shared state infor-
mation. Such violations create small timing based windows where errors can occur and such
errors are very difficult to reproduce and therefore correct. Event driven, single threaded execu-
tion models eliminate many of these potential errors by design. Of course, not all applications
have computational demands that can be easily satisfied by and event driven approach. If the
worst case computation time for a particular thread of control is longer than the response latency
time required of the application, then some way to defer the long running computation must be
devised. But most often the applications running on small embedded targets are usually com-
pletely driven by responses to happenings in the environment in which they reside and the com-
putation of those responses is well within the overall response latency time requirements of the
system. This is especially true given that interrupts can be used to handle most of the hard real
time response requirements.

An application is bound to the STSA execution environment at link time and STSA is completely
data driven. Applications supply instances of a well defined data structure (as an initialized "C"
variable) as part of the interface to STSA and that data structure contains all the information
STSA needs to manage data memory and execution sequencing. This arrangement has several
advantages such as the tight and early binding of application functionality and the fact that most
of the data required by STSA is constant and therefore can be placed in read-only memory which
is often more available than RAM. The disadvantage is that the data that must be supplied to
STSA is tedious to specify and arrange into "C" variables. For example, part of the data required
by STSA is the state transition matrix for the state machines. In the case of the Moore type
machines that are supported by STSA, the transition matrix is usually implemented as a two
dimensional array indexed by a state number and event number with each entry containing the
new state for the transition. Although very convenient and efficient for the implementation, it is
tedious and error prone to manually encode states and events into sequential integers that are
suitable for use as indices into the transition matrix. This is especially the case in the face of
changes in the state machine graph that inevitably occur during development.

Pycca was written specifically to help this problem. Pycca accepts declarations of data struc-
tures and data relationships and of state machines and other procedural operations. All algorith-
mic actions are specified in "C" which is wrapped as a function and ordered in the output to match
the "C" compiler’s needs, but is otherwise passed through unchanged. What pycca generates
from the specification data are the data structures required by STSA to bind together the state
transitions with the passed through "C" code producing a single code file and a single header file.
Hence the name, pycca, an acronym for Pass Your "C" Code Along.

1.4. STSA Concepts

Below we list the concepts behind STSA. This will define terms that are further discussed below.
It is beyond the scope of this paper to cover each of these concepts in detail, but it is sufficient to
say that pycca allows each concept to be specified to the STSA.

(1) Software is organized into Domains. Domains represent a coherent subject matter.
Domains interface to each other by a set of Domain Operations. All other aspects of a
domain are not visible outside of the domain.

(2) Domains consist of a set of Classes. Classes, in turn, consist of attributes. Classes hold
the data of a Domain. The set of Classes of the Domain represents the time invariant
aspect of the Domain semantics as they are encoded into data.

(3) Classes may have relationships between them that model the subject matter associations
that class instances have.

(4)

(%)

(6)

()

(8)

(9)

(10)

(11)

(12)

(13)

(14)

A Class may be instantiated an arbitrary number of times. Each Instance of a Class has
the same data and behavior.

An Instance may be created in one of three ways.

(a) An initial instance. Initial instances come into existence, conceptually, when the sys-
tem is started.

(b) Synchronous creation. One instance may request another instance to be created as
part of its behavior.

(c) Asynchronous creation. One Instance may request that a Creation Event be posted,
that when dispatched will result in an Class Instance being created.

A Class may define Class Operations. Class Operations are common processing associ-
ated to a particular Class.

A Class may define Instance Operations. Instance Operations are common processing
defined by a Class and implicitly associated with a particular Instance of the Class.
Instance Operations perform the same operations on all Instances of the Class.

A Class may define a State Model. The state model is a Moore state machine. Every
Instance of such a Class has its own implicit state variable and Instances change state
independently.

Each state of the State Model may contain an Action. The Action of a state may execute
arbitrary processing.

An Instance transitions from its current state to another state (possibly the same as the
current state) as a result of receiving an Event. Events may carry additional parameters
and these values are available to the Action that is executing when the transition occurs.

Instances may send Events to other Instances including themselves. Any Event sent by
an Instance to itself is received before any Event sent by a different Instance. Events are
not lost and the order of Events sent by an Instance to a particular receiving Instance is
preserved. However, the sender of an Event does not know when the Event is actually
dispatched.

Instances may request that an Event be sent after some delay. No more than one
Delayed Event of a given type may be outstanding between a given source Instance and
a given target Instance (where source and target may be the same Instance). This has
same effect as sending the Event, except that STSA manages the timing. Delayed events
may be canceled and it is possible to inquire as to the amount of delay remaining for a
particular delayed event.

For one particular type of relationship, a Class (the super-type) may be completely parti-
tioned into disjoint sub-Classes (the subtypes). In this case the super-type Class may
define state machine events that are re-mapped at run-time into a corresponding Event of
the subtype to which the super-type is currently related. Such an event is called a Poly-
morphic Event.

An Instance of a Class may be deleted in one of two ways:

(a) Synchronous deletion One instance may request that another instance is deleted.

(b) Asynchronous deletion A state of a State Model may be designated as a Final state.
Instances entering such a state are deleted automatically at the end of the execution of
the final state Action.

2. Pycca

Pycca is a domain specific language. The domain of interest here is specifying data structures,
relationships between data and lifecycles of processing modeled as Moore type finite state
machines. The semantics are those implemented by STSA as described above. Pycca can be
thought of as a partial code generator for STSA based applications. In truth, pycca generates no

code other than trivial instrumentation and functions wrappers. The hard work of expressing
computation is accomplished in "C" with the "C" code being passed through to a compiler. Con-
sequently, pycca is very much a declarative language since it understands nothing about the "C"
code that is passed along. This outlook goes well with focus of pycca generated data structures
required by STSA.

2.1. Example

For the purposes of this paper, we will use a simple running example. This example is about con-
trolling a very simple automatic washing machine. Undoubtedly real washing machines are not
controlled in the manner implied by this example and any reader who knows how washing
machines actually are controlled would probably be horrified by this example. It is not the pur-
pose here to build a real washing machine control system. The purpose here is to choose a sub-
ject matter that most people will know something about and avoid a long explanation of the sub-
ject matter itself.

With that caveat, the figure below shows the class diagram of our washing machine.

.) controls the flow
removes water from Washing Machine of water for
= *WMId -
1 - WashTime 1
- RinseTime
- SpinTime
]
R1 1 | moves the R3
tub for
R2
1 1
1
Pump Valve
* *
WMId (R1) Motor WMId (R3)
* WMId (R2)

Figure 1. Washing Machine Class Diagram

The details of the graphical notation are explained below. For now, it is sufficient to view this as a
picture of a relational schema and a set of referential integrity constraints.

One particular class in the diagram also exhibits interesting life-cycle behavior which is modeled
as a state machine. That figure is shown below.

Idle
Find the related Motor instance.
Generate Stop to motor.

Done

Filling For Washing
Find the related Valve instance.
Generate Open to Value.

Spinning

Find the related Pump instance.
Generate Stop to pump.

Find the related Motor instance.
Generate Spin to motor.

Full

Generate Done to self delayed by
self.SpinTime.

Agitating

Find the related Valve Instance.

Generate Close to valve.

Find the related Motor instance.

Generate Agitate to motor.

Generate Done to self delayed by
self WashTime.

Empty

Emptying Rinse Water

Find the related Motor instance.
Generate Stop to motor.

Find the related Pump instance.

Done

Generate Run to pump.

/

Done

Emptying Wash Water

Find the related Motor instance.
Generate Stop to motor.

Find the related Pump instance.
Generate Run to pump.

Rinsing

Find the related Valve instance.
Generate Close to valve.

Find the related Motor instance.
Generate Agitate to motor.

Empty

Generate Done to self delayed by
self.RinseTime.

ﬁ
Filling For Rinse

Find the related Pump instance.
Generate Stop to pump.
Find the related Valve instance.
Generate Open to valve.

Figure 2. State Model for Washing Machine Class

In this diagram, each rectangle is a state and transitions between states are represented by a
directed line segment labeled with the name of the event that causes the transition. This state
machine is in the Moore formulation of state models which means that the action of the state is

performed when the state is entered. So, when in machine is in the Idle state, receiving the Run
event will cause a transition to the Filling For W ashing state and will perform the logic contained
in the rectangle of that state.

2.2. Example Pycca Source

As is usually the case, even small, simple examples often end up needing more source code than
is convenient to include in a paper of this type. So we will include only part of the pycca source
for the example. Here we show the Washing Machine class definition. This should be sufficient
for you to get the general idea.

class WashingMachine
attribute (unsigned WashTime) default {10}
attribute (unsigned RinseTime) default {10}
attribute (unsigned SpinTime) default {10}
reference R1 -> Pump
reference R2 -> Motor
reference R3 -> Valve

machine
state Idle() {
/I# Find the related Motor instance.
/l# Generate Stop to motor.

PYCCA_generate(Stop, Motor, self->R2, self) ;
}

transition Idle - Run -> FillingForWashing

state FillingForWashing() {
/[# Find the related Valve instance.
/l# Generate Open to Value.

PYCCA_generate(Open, Valve, self->R3, self) ;

}
transition FillingForWashing - Full -> Agitating

state Agitating () {

/l# Find the related Valve Instance.

/l# Generate Close to valve.

/l# Find the related Motor instance.

/l# Generate Agitate to motor.

/l# Generate Done to self delayed by self.WashTime.

PYCCA_generate(Close, Valve, self->R3, self) ;
PYCCA_generate(Agitate, Motor, self->R2, self) ;
PYCCA_generateDelayedToSelf(Done, self->WashTime) ;

}
transition Agitating - Done -> EmptyingWashWater

state EmptyingWashWater () {

/[# Find the related Motor instance.
/l# Generate Stop to motor.

/[# Find the related Pump instance.
/l# Generate Run to pump.

PYCCA_generate(Stop, Motor, self->R2, self) ;
PYCCA_generate(Run, Pump, self->R1, self) ;

}
transition EmptyingWashWater - Empty -> FillingForRinse

state FillingForRinse() {

/[# Find the related Pump instance.
/l# Generate Stop to pump.

[/l# Find the related Valve instance.

/[# Generate Open to valve.

PYCCA_generate(Stop, Pump, self->R1, self) ;
PYCCA_generate(Open, Valve, self->R3, self) ;
}

transition FillingForRinse - Full -> Rinsing

state Rinsing() {

/[# Find the related Valve instance.

/l# Generate Close to valve.

/[# Find the related Motor instance.

/l# Generate Agitate to motor.

/l# Generate Done to self delayed by self.RinseTime.

PYCCA_generate(Close, Valve, self->R3, self) ;

PYCCA_generate(Agitate, Motor, self->R2, self) ;

PYCCA_generateDelayedToSelf(Done, self->RinseTime) ;
}

transition Rinsing - Done -> EmptyingRinseWater

state EmptyingRinseWater() {

/l# Find the related Motor instance.
/l# Generate Stop to motor.

/[# Find the related Pump instance.
/l# Generate Run to pump.

PYCCA_generate(Stop, Motor, self->R2, self) ;
PYCCA_generate(Run, Pump, self->R1, self) ;

}
transition EmptyingRinseWater - Empty -> Spinning

state Spinning() {

/[# Find the related Pump instance.

/l# Generate Stop to pump.

/[# Find the related Motor instance.

/l# Generate Spin to motor.

/l# Generate Done to self delayed by self.SpinTime.

PYCCA_generate(Stop, Pump, self->R1, self) ;
PYCCA_generate(Spin, Motor, self->R2, self) ;
PYCCA_generateDelayedToSelf(Done, self->SpinTime) ;
}
transition Spinning - Done -> Idle
end
end

Figure 3. Pycca Source for Washing Machine Class

Compare the source text above to the graphic of Figure 1 and the state graph of Figure 2. There
are three attributes of the Washing Machine class, corresponding to the times that are used in
controlling the cycle. There are three references to the Pump, Motor and Valve classes. The full
text of the source has definitions for those classes. The state machine definition includes

definitions for each state and the transitions between states.

It is worth noting that there is no order dependency in pycca. Classes may be defined in any
order. State machine definitions are also order independent in the sense that you may define all
the states or all the transitions and in any order. The style of the example is to define states and
follow them by their outbound transitions, but that is strictly a coding convention and not a require-
ment of pycca syntax. Note that there is no separate definition of the events, they are gleaned
from the transition statements. The body of the state definitions is "C" language code. In the
above example it consist entirely of macros that are used to generate events. Pycca inserts a set
of "C" pre-processor macros into the output that are very useful for hiding the naming conventions
and interfacing with the STSA execution architecture. Indeed the "C" code for a pycca state
machine is often very stylized since the macros provide the interface to a large part of the ordi-
nary processing that state actions perform. Clearly, this particular example is dominated by state
behavior, but other types of applications would have more of what would be considered normal
"C" statements.

2.3. Pycca Workflow
The figure below shows the general workflow when using pycca.

pycca

source

C code STSA
library

compile
link

program

Figure 4. Building a Program with pycca

Pycca source is processed by pycca to produce a single "C" language code file and a single "C"
header file. Pycca can process several source files together as if they were one file. The "C"
output must be compiled and linked against the STSA library. Of course, other code files may be

linked into the program and the program may have many pycca generated files. Pycca is able to
insert line numbers into the generated code file that references the original source or to leave out
those numbers if they should confuse your debugger.

In general, the difficulties of working with pycca come more from the translation of the design
ideas into source. From there on, the workflow is quite traditional.

3. Pycca Internals

Up to now, there has been a lot of background and not much Tcl. However, pycca is imple-
mented in Tcl. Now we will consider the design of the internals of pycca and attempt to highlight
the Tcl technology that was used.

pycca
source
populated code
schema template

semantic template
analysis expand
y schema P
serialize
C
source
saved
population

Figure 5. Pycca Internal Data Flow

Figure 5 above shows a high level view of the design of the internals of pycca. The pycca
source is first parsed. The parsed components are stored in a normalized relational schema.
Like most language processing programs, after the syntax is verified, it is necessary to do some
semantic analysis to insure that the language statements are meaningful. Unlike most computer
languages, pycca is not expression oriented. Rather the pycca language itself is declarative in
nature. Algorithmic computation is left to "C" code statements that are passed along to a com-
piler. This means that the generation of output is amenable to using template expansion tech-
nigues. Pycca expands a template by querying the data from the populated schema to produce
the desired "C" code file. Optionally, pycca can save the populated schema by serializing it. We

will find that useful later.

In the following sections we will examine the details of each of these steps, again looking at the
Tcl technology used to implement them. What we will see is that pycca looks very much like a
traditional database application and less like a language compiler than might initially be recog-
nized.

3.1. Parsing Techniques

There are many options in Tcl for parsing domain specific languages. The usual advice to those
with less experience in Tcl is use the Tcl parser itself to parse a language. Being a command
language with a very simple syntax, Tcl is well suited to apply to domain specific languages. The
language syntax can be defined in terms of Tcl commands with parameters that pass the
required information. It is relatively easy to support a hierarchy of definitions by evaluating a
script body in a namespace that exposes a limited set of commands suitable to the context. How-
ever, exposing some Tcl syntax is unavoidable with this approach and that may not be acceptable
in all circumstances.

In the case of pycca it was decided that a more conventional syntax would be better for the target
audience. Fickle and tackle are Tcl analogs to the venerable lex / yacc (or flex / bison) lexical
analyzer and parser generators. They use an input file syntax that very close to that of lex and
yacc and generate a lexical analyzer or parser in Tcl code. Unfortunately, the generated parser is
not as robust as one might desire. Detection of language grammar issues is very limited. A num-
ber of small problems with the tackle code itself were found. In the end, the generated parser is
sufficient for the purposes, but a future version of pycca will probably return to using Tcl syntax
and the Tcl parser.

3.2. Parsing Results

In conventional language processing programs, as language statements are recognized the
parsed components are used to build symbol tables and syntax trees. This is especially true of
languages that are generating code for statements and expressions. Since the usual infix nota-
tion provides a convenient way to specify a tree in a linear fashion, grammar reductions are usu-
ally used to construct an expression as a syntax tree that is much easier to manipulate program-
matically.

However, the pycca language is not used for code generation, per se. As we discussed above,
what pycca does is to pass along "C" code, somewhat repackaged and reorganized, and to gen-
erate data structures that are used as the interface to the execution architecture. Symbol tables
and syntax trees do not help in this type of processing. Rather, what pycca does is to populate a
normalized relational schema. This relational schema constitutes a meta-model of the domain for
which pycca is the domain specific language.

Class State
**2 Domainld (R2) * ok i
* 2 Domainld (R6

* Classld StateModel -< Ro **2 Classld (R(G))
*2 ClassName 1 RS »| *Domainld (R5, R16) is part of contains| * gtateld
- Line describes the behaves | *Classid (RS, R16) *2 StateName
- StorageSlots behavior of according to | DefTrans ” R16 1| -Params
- PolyEvents InitialState (R16) > _line
- StorageClass - Line is the initial state has a default | - Code

initial state | - Codeline

Figure 6. P art of the pycca Meta-model

Figure 6 above shows a graphical representation of very small part of the relational schema that
constitutes the pycca meta-model. This is only a small part of the schema that we will use for an
example and the full schema graphic is available with the project source. In this graphic, rectan-
gles represent relation variables with their attributes given in a list. Attributes that begin with an
asterisk (*) are identifiers. If there are multiple identifiers, the asterisk is followed by a number,
e.g. *2. An identifier may consists of several attributes and a given attribute may be part of multi-
ple identifiers. All relation variables have at least one identifier and all tuples of the relation must
be unique in the values of all identifiers. Thus relation variables hold sets. Attributes that have a
leading hyphen (-) are descriptive attributes that define a variable in the predicate that the relation
variable intends to model.

Arrows in the diagram indicate a relationship between the relation variables. Relationships are
implemented via referential attributes and constraints on the values of those referential attributes,
i.e. attributes in one relation variable whose values must match the values of attributes in another
relation variable. The direction of the relationship is from the referring attributes to the referred-to
attributes. Relationships are given a moniker, e.g. R16, and attributes that are used to imple-
ment that relationship have a parenthesized list of relationship monikers following their name.
Relationships are functions or partial functions between the participating relation variable sets.
The cardinality of the relationship is also given by a single character that is mnemonic of the use
of that character in regular expression notation. So, 1 means exactly one, ? means at most one,
+ means one or more and * means zero or more. The relationship is traditionally annotated with
the semantic meaning of the set mapping implied by the relationship function.

The graphic describes a relational schema that in turn describes a set of logical predicates that
we insist be true. Using the State class as an example, we can make the following statements:

» A State is identified by the Domain in which it resides (Domainld), the Class to which it
belongs (Classld) and an arbitrary number (Stateld).

» A State is also identified by the Domain in which it resides (Domainld), the Class to which it
belongs (Classld) and its name (StateName).

» A State is characterized by a set of parameters (Params), the number of the line in the pycca
file on which the State definition begins (Line), a body of "C" code (Code) and the line on
which the state code first appears (CodeLine).

Considering the relationship, R16, we can say:

» A StateModel has exactly one default initial State .
» A State is the default initial state for at most one StateModel .

All of these statements define rules that must be true for the domain for which pycca is the
domain specific language. The actual number of rules is quite large. The pycca domain is a bit
abstract since it is involved with defining classes and state models, but does have a well defined
set of semantics and there is a well defined set of rules that is captured by the relational schema.

3.3. Storing the Parsing Results

As we stated above, the parsing results of pycca are not stored in the conventional manner of
symbol tables and syntax trees. Rather, it is stored as set of relation variables. There are many
ways in Tcl to store relational information. One obvious choice is to use a Database Management
System (DBMS). Most DBMS are programmed in some dialect of SQL and with careful SQL pro-
gramming the relational qualities of the meta-model may be preserved.

Another alternative is to use TcIRAL. TcIRAL is a "C" based Tcl extension that provides a com-
plete relational algebra. It does this by extending the internal type system of Tcl to define the new
types of Tuple and Relation and adds a new shadow variable system specifically to hold relation
values. TcIRAL is analogous to a data base system that only has in-memory tables and is pro-
grammed in Tcl rather than SQL. It is convenient to use TcIRAL as we do not have to deal with
other languages like SQL, there is no impedance mismatch between the query language and the
programming language as they are both Tcl, it interacts well with other Tcl constructs such as the
existing Tcl data types, interpreters, threads and starpacks and the amount of data that pycca
handles easily fits within program memory.

Here we present the commands to create the relation variables that correspond to the graphic
above (here we assume that ::ral::* has been imported into the namespace).

http://sourceforge.net/projects/tclral

relvar create Class {
Domainld int
Classld int
ClassName string
Line int
StorageSilots int
PolyEvents list
StorageClass string
} { Domainld Classld} {Domainld ClassName}

relvar create StateModel {
Domainld int
Classld int
DefTrans string
InitialState string
Line int

} { Domainld Classld}

relvar association R5\
StateModel {Domainld Classld} ?\
Class {Domainld Classld} 1

relvar create State {
Domainld int
Classld int
Stateld int
StateName string
Params list
Line int
Code string
CodelLine int
} { Domainld Classld Stateld} {Domainld Classld StateName}

relvar association R6\
State {Domainld Classld} *\
StateModel {Domainld Classld} 1

relvar association R16\
StateModel {Domainld Classld InitialState} ?\
State {Domainld Classld StateName} 1

Figure 7. Pycca Meta-model Expressed in TcIRAL

Figure 7 shows the translation of the above graphic into TcIRAL. The close correspondence
between the graphics and the TclIRAL script is by design. The relvar create command cre-
ates a relation variable that can hold a relation value of the type given by the heading. The head-
ing consists of both attribute names and data types, the data type names being any valid Tcl data
type. The identifiers of the relvar are given as additional arguments that are lists of attribute
names that constitute each identifier.

It may seem unusual to have to specify type information in a language like Tcl. This is actually a
data validation constraint. TcIRAL will insist that any value stored in an attribute be able to be

coerced into the type of that attribute. This avoids any problems in future usage of the attribute.
Since string is the universal Tcl type, any attribute declared as a string type will accept any
value.

The code segment below is taken from the tackle source of the pycca parser and shows the
action taken when a state is defined and when an initial state is declared.

machineProp
S TATE NAME varList CODE {
newState [dict get $2 value] $3 [dict get $1 line]\
[dict get $4 value] [dict get $4 line]
}
| I NITIAL STATE NAME {
setlnitialState [dict get $3 value]

Figure 8. Grammar Reduction for a State

As we can see from above, when a state declaration is recognized then the procedure newState
is invoked. That procedure is shown below.

proc ::newState {name params line code codeline} {
catchDuplicate {
relvar insert State [list\
Domainld $::Domainld\
Classld $::Classld\
StateName $name\
Params $params\
Line $line\
Code $code\
CodelLine $codeline\

} $ name

Figure 9. Relvar Population when a State is Recognized

The newState procedure simply performs an insert into the State relvar (the catchDuplicate
procedure is a control structure that emits a friendlier error message should the state already be
defined).

Similarly, defining an initial state results in updating the appropriate attribute in the StateModel
relvar as shown below.

proc ::setlnitialState {state} {
relvar updateone StateModel sm\
[list Domainld $::Domainld Classld $::Classld] {
tuple update $sm InitialState $state

Figure 10. Relvar Population when an Initial State is Specified

In this procedure the global variables ::Domainld and :Classld are set by other grammar
reductions to provide a context for statements that are organized hierarchically in a particular
domain or class. The body of the procedure simply updates the InitialState attribute of a single
StateModel tuple.

The above is intended to illustrate the point of how pycca stores the results of parsing by populat-
ing a relational schema. Viewed another way, the pycca language is then simply a more con-
venient textual representation for the schema population. The schema could have been popu-
lated, like any other relational schema, by directly providing tuples to be inserted into the relation
variables. Although applicable to any schema, such population methods require knowledge of the
relation variables in the schema and such generic ways of populating the schema are devoid of
the semantics of the problem that the domain specific language is intended to help.

As we shall see, populating a relational schema provides a very powerful method of manipulating
and querying the data. We now begin to exploit that property of well organized data.

3.4. Semantic Analysis

Every computer language allows many statements that are syntactically correct but otherwise
meaningless. In this section we examine how pycca evaluates its input to determine if all the lan-
guage statements can be given a precise meaning.

3.5. Semantics Enforced b y Referential Integrity

As we saw above, pycca uses a relational schema to store the parsed data. That schema has
many integrity constraints associated with it. Previously we had looked at one of those con-
straints that defined the relationship between a StateModel and a State that was specified to be
the default initial state. For R16 we said that:

» A StateModel has exactly one default initial State.
» A State is the default initial state for at most one StateModel .

So at the end of populating the schema, R16 will insure that somewhere along the way exactly
one state was specified to be the default initial state and that the state is part of the StateModel
being specified. TcIRAL will enforce the association constraint that was defined as R16 to insure
that the data entry is performed correctly.

That's really rather nice. For no extra coding, we used referential integrity constraints to enforce
the semantics of our underlying meta-model. This is one of the reasons integrity constraints are
so important. Other than specifying the constraint to TcIRAL, we have no other coding to do and
the system (i.e. TcIRAL) will insure that state of the stored data always satisfies the constraint.

This naturally brings up the question of whether or not all the semantic analysis can be accom-
plished this way. That is an open question. Certainly, pycca does not accomplish all the seman-
tic analysis by using relvar constraints. The underlying meta-model used by pycca is not that
sophisticated containing only 18 relvar constraints. There is a certain trade-off between the

complexity of the data model (and consequently the amount of the semantics that are encoded in
the referential integrity constraints) and the simplicity of doing some semantic analysis in code.
Pycca uses both techniques as we will see below. Also there seem to be some problem seman-
tics that are difficult or impossible to compose entirely into data constraints. In particular, con-
straining a directed graph to be acyclic may be impossible to do with referential integrity con-

straints alone.®

3.6. Semantics Enforced b y Schema Query

In addition to referential integrity constraints, pycca also verifies 18 different semantic aspects of
the source by querying the schema and examining the results. Here we look at one example, the
declaration of isolated states. It is possible to declare a State in a StateModel that has no
inbound state transition and no outbound state transitions. Such a state cannot be reached and
therefore any code that is associated with that state will never be executed. This is the state
machine equivalent of dead code. Pycca considers it an error to declare an isolated state in a
state machine.

Find isolated states, i.e. states that have no outgoing or
i ncoming transitions
set nolns [relation semiminus $::Transition $::State\
-using {Domainld Domainld Classld Classld NewState StateName}]
set noOuts [relation semiminus $::NormalTrans $::State\
-using {Domainld Domainld Classld Classld StateName StateName}]
set isoStates [relation intersect $nolns $noOuts]
relation foreach isolated $isoStates {
relation assign $isolated Line StateName
reporterror "state has no incoming or outgoing transitions"\
$Line $StateName

Figure 11. Finding Isolated States

The query in Figure 11 above shows how isolated states are detected. The strategy is to find all
the states that have no incoming transitions and all the states that have no outgoing transitions.
Then simple set intersection of those two relations then gives the set of isolated states for which
an error needs to be reported.

Finding the set of states without any incoming transitions is done with the semiminus operation.
Semiminus gives, roughly speaking, the set of tuples in one relation that are not related to those
in another relation. In the above example, we find those tuples of State that are not related to a
Transition using the NewsState attribute. The NewState attribute gives the destination of a transi-
tion, so those States whose StateName values are not associated with the NewState attribute
have no incoming transitions. Similar reasoning holds for the semiminus operation with respect to
the NormalTrans relvar where the StateName attribute holds the source state of a transition.
Once those two sets are determined, it is then just a simple matter of taking the intersection and
iterating through the tuples to report the errors.

What is most noticeable about the above code sequence is the lack of any looping construct.
Relational algebraic operation always apply the the entire set represented by the relation value.
The only loop is that implied by the relation foreach command which is used to access the

5 Private communications from Paul Higham for whom this is a favorite problem.

individual attributes for error reporting. It is common in the relational realm only to use tuple itera-
tion at the end of the computation where it is necessary to interface to other non-relational con-
structs.

3.7. Template Expansion

Since the primary purpose of pycca is to pass along "C" code as opposed to actually compiling a
source language to a target language, it does not use the usual language processing strategy of
building syntax trees and flow graphs. The bulk of the work is building data structures, encapsu-
lating code fragments and then emitting "C" code and header files. Since "C" source code
requires substantial type annotation and "C" compilers insist upon a certain ordering in the code,
pycca uses template expansion as a means of generating its output. The textutil::expander
package in tcllib is well suited to this purpose. Using the expander is simple enough. You define
a template, generate an instance of the expander and request the expander to do its job. Embed-
ded in the template are Tcl scripts that are extracted and executed with the result being inserted
into the generated text.

The example below is the template that pycca uses to emit its code file. We have instantiated the
expander as:

textutil::expander ex
ex setbrackets %< >%

The default of square brackets ([]) for enclosing the embedded Tcl script is not convenient for "C"
code. Below is the template string for the generated "C" code file. It is generated by invoking:

ex expand $code_body

set code_body {
%<domain_name>%
%<instrument_define>%
%<emit_auxiliary Impl Prolog>%

#ifdef INSTRUMENT

i fndef INSTR_FUNC

define INSTR_FUNC(s) printf("%s: %s %d0, s, _ FILE_ , LINE_)
endif ¥ INSTR_FUNC */

#endif /* INSTRUMENT */

%-<state_defines>%
%<event_defines>%
%-<subcode_defines>%
%<inst_name_defines>%
%-<class_struct_decl>%
%-<class_struct_define>%
%~<event_param_struct>%

%<operation_decl>%
%-<ctor_decl>%
%-<dtor_decl>%
%~<action_decl>%
%<domain_op_decl false>%
%<initial_inst_ctor_decl>%
%<storage_decl>%

%<iab_define>%
%<odb_define>%
%<pdb_define>%
%-<class_define>%

%<multi_refs>%
%<inst_define>%
%<operation_define>%
%-<ctor_define>%
%-<dtor_define>%
%~<action_define>%
%<domain_op_define>%
%<initial_inst_ctor_define>%

%<emit_auxiliary Impl Epilog>%

}

Figure 12. Pycca Code Template

Each command between the %< and >% brackets is a query on the relational schema that was
populated during the parsing phase.

As an example, we will consider part of what happens to the code of a state action. Each action
is turned into a function by wrapping a signature around the code. These functions are file static
in scope and, since the order of reference is not known, it is necessary to place forward

declarations to them into the code. This is accomplished by the action_decl command.

Before we examine the query for the action declarations, we need some preliminaries. We'd like
to emit the declarations on a class by class basis, so it is useful to be able to have a relation value
that relates the name of a class to all of its state machine information. The getStatesByClass
command does this.

proc ::getStatesByClass {} {
return [pipe {
relation semijoin $::currentDomain $::State\
-using {Domainld Domainid} |
relation group ~ States Stateld StateName Params Line Code CodeLine |
relation join ~ $::Class -using {Domainld Domainld Classld Classl|d} |
relation project ~” ClassName States
1
}

Lets examine this query. First the pipe command is a control structure that allows you to write a
nested set of commands in a sequential fashion. It has nothing to do with relational algebra per
se, although it is particularly useful in that context. In the above example, pipe allows us to write
the four commands of the query is a clearer order. Commands are separated by a vertical bar (|)
and the result of the previous command is substituted for the tilde (7) character argument in the
subsequent command. Pipe is supplied as part of the ralutil package.

There are four steps in this query.

(1) Find all the states in the current domain. The relation semijoin operation returns a rela-
tion that has the same heading as the State relvar with those tuples that are related to the
current domain. The ::currentDomain variable is an ordinary Tcl variable that is
global in scope and assigned a relation value by other processing. The heading of the
State relation is:

Domainld Classld Stateld
int int int

Code CodelLine
string int

Params | ine

list int

StateName
string

The result of this operation is the set of all states in the current domain.

(2) The relation gr oup operation creates a relation valued attribute from attributes in the
original relation. In this case we are grouping all the attributes that pertain to the states of
a class into a single attribute. The result will have a new attribute named States that is a

relation valued attribute’. The resulting heading is:

Domainld

States

int

Classld
int

Stateld

StateName

Params

Line

Code

CodeLine

int

string

list

in

t

string

nt

(3) The relation join operation is used to relate the Classld attribute to is corresponding
name. In this case we are interested in the name of the class rather than its numeric
identifier that is used internally.

(4) Finally, the relation pr oject operation gives us only the attributes that we are interested
in, namely the ClassName and its corresponding set of states. Note that the States

" Readers steeped in SQL will find relation valued attributes unusual, but they have many legitimate uses as well as
a host of abusive uses.

attribute is a relation itself and contains the complete set of states that correspond to
ClassName. The heading of the result relation is:

ClassName States
string Stateld | StateName |Params |Line Code CodeLine
int string list int string int

With the preliminaries out of the way, we proceed to the action_decl command that generates
a set of forward function declarations.

proc ::action_decl {} {
append result [comment "Forward Declarations of State Action Functions"]
relation foreach state [getStatesByClass] -ascending ClassName {
relation assign $state
relation foreach stateinfo $States -ascending StateName {
relation assign $stateinfo
append result [emit_action_signature $ClassName $StateName] " ;\n"

}

return $result

}

proc ::emit_action_signature {className stateName} {
append result\
"static void ${className} ${stateName}\("\
"void *const s_, "\
"void *const p_)"

Figure 13. State Action Declaration Query

It is a relatively simple matter to use the relation f oreach command to iterate through each class
and then to iterate through each state generating a static "C" function declaration. The relation
assign command takes a singleton relation value and creates a Tcl variable for each attribute
with the variable named the same as the attribute. for each attribute that has the same name as
the attribute.

The result of template expansion query for our running example is:

/*
* F orward Declarations of State Action Functions
*/
static void Motor_Agitating(void *const s_, void *const p_) ;
static void Motor_Off(void *const s_, void *const p_) ;
static void Motor_Spinning(void *const s_, void *const p_) ;
static void Pump_Off(void *const s_, void *const p_) ;
static void Pump_Running(void *const s_, void *const p_) ;
static void Valve_Closed(void *const s_, void *const p_) ;
static void Valve_Open(void *const s_, void *const p_) ;
static void WashingMachine_Agitating(void *const s_, void *const p_) ;
static void WashingMachine_EmptyingRinseWater(void *const s_, void *const p_) ;
static void WashingMachine_EmptyingWashWater(void *const s_, void *const p_) ;
static void WashingMachine_FillingForRinse(void *const s_, void *const p_) ;
static void WashingMachine_FillingForWashing(void *const s_, void *const p_) ;
static void WashingMachine_ldle(void *const s_, void *const p_) ;
static void WashingMachine_Rinsing(void *const s_, void *const p_) ;
static void WashingMachine_Spinning(void *const s_, void *const p_) ;

Figure 14. State Action Declaration Example Results

So the strategy here is to use the code template to specify the order in which fragments will be
presented to the "C" compiler. Those fragments are generated by expanding the template which
in turn invokes a series of commands that are queries on the schema population that was built up
during the parsing phase. The query commands build up a report that is inserted into the result
of the template expansion. Here it happens to be that the generated report is "C" code.

4. Friends of Pycca

It is often difficult to determine precisely what functionality a program or suite of programs will
need when first starting out. That was certainly the case with pycca. The original idea for pycca
was simply to ease to burden of constructing the data structures needed by the STSA. It is easy
to convince yourself that a fixed set of implementation data structures will meet the immediate
needs of the program you are constructing. However, using relational data structures provides
substantially more power and flexibility. Since TcIRAL can serialize a set of relvars to external
storage, once parsed any given pycca file can be easily saved for later use. One aspect that
relation data structures support is the notion of ad hoc query. Most programmers don't deal with
ad hoc queries as part of a program with fixed functionality. But support of these types of queries
is a powerful way to extend programs or create sets of programs that work well together, bound
by a common relational data schema.

These consideration lead to several auxiliary programs for pycca. In the section below, we dis-
cuss three of the most useful examples of programs that use the serialized pycca output to pro-
vide additional support for building embedded software programs. The serialized relvars that
pycca saves contain all the information that is in the original pycca source but in an already
parsed and organized form. This makes writing the helper program usually a simple matter of
reading in the file and performing a different set of queries to produce the needed output.

4.1. Pyccae xplore

Although pycca allows states and events to be specified as nhamed entities, in truth the execution
architecture works strictly off of numbers. State and event names are converted by pycca to inte-
gers that are ultimately used as indices into an array that holds the state transition matrix. In
small embedded systems, there is no memory to hold the original string names for the states and

events and pycca does not attempt to put those strings into the generated program. Conse-
qguently, during debugging one is often faced with trying to determine the state of a particular
class instance and where it might transition under a given event. Sadly, when looking at a source
level debugger the information that is available will be something to the effect of:

Instance 0x57ae is in state 3 and is about to receive event 1 causing a transition to state 4.

This is not very helpful. What is needed is the mapping between state and event names and the
numbers that pycca assigned to them. This is why pyccaexplore was written.

Pyccaexplore will read the serialized relvars saved by pycca and display the state transition

matrix of all the classes. That display contains both the name and number of each state and
event.

Eile Help

Moter |, Pump | Valve | WashingMachine

Events 0 1 2 3
States Done Empty Full Run
0 CH CH CH FillingForWashing
Idle
1 —
FillingForWashing cH cH Agitating cH
) :
St EmptyingWashWater CH CH CH
Agitating Ptying
Emptyingwashwater CH FillingForRinse CH CH
4 pe—
- . CH CH Rinsin CH
FillingForRinse 9
5 Lo
Rinsing EmptyingRinseWater CH CH CH
6 i
, 4 : CH 5 CH CH
EmptyingRinseWater BRI
A \dle CH CH CH
Spinning

Ready

|Ver5ion 211

Figure 15. Screen Shot of Pyccaexplore

The figure above is a screen shot of pyccaexplore for the example state machine. Buttons along
the left allow selection of rows that correspond to states. Buttons along the top allow selection of
columns that correspond to events. When both a row and column are selected, a single cell is
highlighted showing the transition that would happen when the highlighted event is received in the
highlighted state. The above figure can be interpreted as indicating that when state 3 (Emptying-
WashWater) receives event 1 (Empty) it transitions to the FillingForRinse state which is numbered
4.

4.2. Pycca2dot

The pycca source that defines a state machine is relatively easy to read and does not depend
upon the ordering of state and transition declarations. But, state machines are sometimes better
represented as directed graphs. Usually when designing a state machine, | do so graphically.
Often, maintaining the design time graphics during the implementation does not happen. What
pycca2dot does is produce a graphic that precisely matches the implementation. Reading in the

serialized relvars, pycca2dot produces a file that can be fed to dot® to produce a state machine
graphic. The dot program takes a free form text input file that defines the graph connections and
appearance properties. Dot lays out the graph and is capable of producing a wide variety of
graphical file format outputs. The figure below show how dot rendered the Washing Machine
state model show previously in Figure 2. This is quite remarkable especially given that we have
supplied no positioning information at all. Dot accomplishes the graph layout based solely on the
graph connectivity information.

8 www.graphviz.org

http://www.graphviz.org

Idle
Find the related Motor instance.
Generate Stop to motor.

Run
FillingForWashing
Find the related Valve instance.
Generate Open to Value.
Full
Agitating
Find the related Valve Instance.
Generate Close to valve.
Find the related Motor instance.
Generate Agitate to motor.
Generate Done to self delayed by self.WashTime.
Done
EmptyingWashWater
Find the related Motor instance.
Generate Stop to motor.
Find the related Pump instance.
Generate Run to pump.
Em pty Done
A 4
FillingForRinse
Find the related Pump instance.
Generate Stop to pump.
Find the related Valve instance.
Generate Open to valve.
Full
Rinsing
Find the related Valve instance.
Generate Close to valve.
Find the related Motor instance.
Generate Agitate to motor.
Generate Done to self delayed by self.RinseTime.
Done
EmptyingRinseWater
Find the related Motor instance.
Generate Stop to motor.
Find the related Pump instance.
Generate Run to pump.
Empty

Spinning

Find the related Pump instance.

Generate Stop to pump.

Find the related Motor instance.

Generate Spin to motor.

Generate Done to self delayed by self.SpinTime.

Figure 16. Washing Machine State Model from pycca2dot

4.3. Tracing State Machine Dispatch

The STSA execution architecture can be conditionally compiled to trace the dispatch of state
machine events. Programs may supply a callback function that is invoked during the tracing and
that function can store or transmit the trace data. However, as we have seen, there is no string
information in the embedded system and all the trace data is numeric. It takes knowledge of the
state and event name to number mapping as well as knowledge of the link map to translate the
numerical trace information back into meaningful strings for human consumption. The mech-
trace package reads the saved relvars from pycca and the ELF file of the executable and is able
to translate a packet of trace information into a human readable string.

The most immediately useful consequence of this is to obtain a chronological sequence of event
dispatches. This is extraordinarily useful information since the execution sequencing of the pro-
gram is not easily followed just from the code alone. The STSA implements state machine call-
back type of execution sequencing. So all the significant code in the program ends up packaged
into functions that are called as part of dispatching an event. The invoked callback may indeed
generate other events, but does not directly affect the execution sequencing as other events may
already be queued. The effect is very similar to typical GUI programs where the sequencing of
event dispatches is centralized and not directly visible to the programmer. So a chronological
sequence of state transitions can provide enormous insight into the run-time behavior of a pro-
gram.

Another benefit of obtaining trace data is related to testing. Because all the execution sequencing
is centralized, the sequence of trace data can be used to compute the state transition coverage
for testing purposes. In well designed state machines, the state action code is small and contains
little conditional logic. Indeed deeply nested conditional logic in a state action is an indication that
the analysis should be revisited to look for the possibility of several classes being confused as
one or that other state information is being hidden in instance variables. The mechtrace package
includes procedures to tally the transitions that are implied by the tracing data and then to com-
pute the transitions that were not taken in the state machines. This gives objective evidence of
the testing that has been done as well as indicates any short comings in the test case coverage,
at least at a state transition level. Given that state diagrams are directed graphs, then a depth-
first search of the graph can be used to compute a spanning tree the arcs which are labeled with
the events necessary to visit every state in the machine. Thus much of the work of determining a
set of test cases that will cover the transitions of the state machine can be computed a priori.

5. Conclusions

Pycca is a program that implements a domain specific language. The language that pycca
implements is used as a helper to specify data and control structures for highly embedded micro-
controller based software applications.

Yet the internals of pycca look more like a traditional database application. Pycca uses language
statements to populate a normalized relational schema. The language provides a more con-
venient syntax that is focused on the declarative aspects of the application and hides the details
of the underlying schema. The output of pycca is generated by query on the population and the
report of that query is generated by template expansion to produce "C" code. The relational data
structure provide a number of distinct advantages.

(1) The algebra of relations is independent of the headings of the relations. So there is only
one set of access methods that need to be learned. It is not necessary to code ad hoc
data structures and a set of access mechanisms for them. Especially since in practice,
such access layers rarely get the attention and detailed error checking that they need.

(2) Referential integrity constraints are a powerful tool to validate the schema population and
enforce the rules of the application. Integrity constraints are declarative in nature and

correspond to the semantic rules of the application. Specifying the integrity constraints is
usually easier than writing code to accomplish the validation and enables a substantial
part of the application semantics to be checked during the data population.

(3) There are a variety of implementation choices for relational data in Tcl that can be
matched against the scale of the application. For simpler, in-memory applications TcIRAL
is a good choice and does not involve a separate query language. If the file storage
nature of the application is more important, SQLite is good choice. It is easy to use, read-
ily available and does not involve extensive administration, albeit the queries must be pro-
grammed in a separate language from Tcl. Finally, for large scale applications it may be
advisable to use one of the server based DBMS accessed via TDBC.

(4) A relational schema serves as a convenient way to bind a suite of programs together,
each performing specific tasks associated with the overall application. This makes phas-
ing in a toolbox of programs for the application much easier to accomplish and argues
against monolithic programs that try to provide all the functionality of an application. Such
programs inevitably become unwieldy and hard to maintain.

None of these points is particularly new or novel. Much of the motivation of creating DBMS in the
past was to reap just these benefits. What has changed is the array of choices in the implemen-
tation technology that allows even simple programs that one might never consider to be database
applications to take advantage of the power of relationally structured data.

	1 Introduction
	1.1 Resources
	1.2 An Execution Architecture for Embedded Systems
	1.3 STSA
	1.4 STSA Concepts

	2 Pycca
	2.1 Example
	Figure 1 Washing Machine Class Diagram
	Figure 2 State Model for Washing Machine Class

	2.2 Example Pycca Source
	Figure 3 Pycca Source for Washing Machine Class

	2.3 Pycca Workflow
	Figure 4 Building a Program with pycca

	3 Pycca Internals
	Figure 5 Pycca Internal Data Flow
	3.1 Parsing Techniques
	3.2 Parsing Results
	Figure 6 Part of the pycca Meta-model

	3.3 Storing the Parsing Results
	Figure 7 Pycca Meta-model Expressed in TclRAL
	Figure 8 Grammar Reduction for a State
	Figure 9 Relvar Population when a State is Recognized
	Figure 10 Relvar Population when an Initial State is Specified

	3.4 Semantic Analysis
	3.5 Semantics Enforced by Referential Integrity
	3.6 Semantics Enforced by Schema Query
	Figure 11 Finding Isolated States

	3.7 Template Expansion
	Figure 12 Pycca Code Template
	Figure 13 State Action Declaration Query
	Figure 14 State Action Declaration Example Results

	4 Friends of Pycca
	4.1 Pyccaexplore
	Figure 15 Screen Shot of Pyccaexplore

	4.2 Pycca2dot
	Figure 16 Washing Machine State Model from pycca2dot

	4.3 Tracing State Machine Dispatch

