
The C Raster Image Manipulation Package

Andreas Kupries ActiveState Software Inc. 409 Granville Vancouver, BC CA

andreask@ActiveState.com

ABSTRACT
This paper provides an overview of a new image manipu-
lation and processing package for Tcl, the C Raster Image
Manipulation Package, or CRIMP for short. We will have
a quick look into its history, internal organization and im-
plementation, plus current and possible future features and
directions to work in.

1. OVERVIEW
CRIMP, the C Raster Image Manipulation Package, is a

new package for image manipulation and processing in Tcl.
Note that no mention was made of Tk. Its need for an

(interactive) X11 display makes the scripting of image pro-
cessing on head-less servers quite awkward to set up. Not
impossible, but definitely not trivial either.

Thus one of CRIMP’s goals is to be independent of Tk and
avoid that bit of unpleasantness. Another goal was easy ex-
tensibility, i.e. the ability to add more functionality quickly
and without hassle.

With regard to the available functionality it doesn’t con-
tain much yet due to its very young age, and most of what
is present is very basic, however I hope to rectify that in the
time to come.

The remainder of this paper is structured as follows: In
the next chapter an anecdotal overview of the history of this
package is provided, such as it is. After that, in chapter 3, a
general overview of its design, implementation, and features
is given. This is followed by chapter 4 talking about build
issues, and lastly chapter 5 discussing possible applications
and future directions for the package.

2. HISTORY
CRIMP started with my desire to gain more understand-

ing of the algorithms going into image processing in such
diverse areas as the post-processing of photos (red-eye re-
duction, contrast enhancement, pyramid blending, ...) and
document analysis (page recognition, binarization, rectifica-
tion and dewarping, OCR, ...).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tcl ’2010 Oakbrook Terrace/Chicago, IL, USA
.

I was aware of pixane[4], which was not free, and tcl.gd[5]
which was focused on drawing charts and not the kind of
things I was interested in. Then there is tkImg [6], which is
focused on I/O, and bound to Tk [13] as well.

In the end I based it on Andrew M. Goth’s “Critcl Image
Processing” work found on the Tcler’s Wiki [1], with heavy
modification of the internals for better caching of values.

Searching around while writing this paper I found a few
more, none of which fit exactly my wants either. All are
shown in table 1 on the next page.

It still feels a bit like how everybody writes their own OO
system for Tcl. Water under the bridge.

Despite the stated goal of Tk independence the current
sources are tied to Tk, simply to allow me to see what the
algorithms do while I am developing, without having to leave
Tcl/Tk.

The connection is however quite thin, and easily severed.
It is enough to remove the files matching the glob patterns
read-tk.crimp and write-*-tk.crimp, and to possibly re-
build the binary part, if critcl [3] is not used in interactive
mode.

In the future one of the things I have planned to do is
splitting these Tk dependent parts into a separate package.
Right now this will however require either a complete over-
haul of the build system, or work on critcl [3] to enable
the proper handling of package-specific stub tables. One of
my side-experiments in this area is the conversion of the
genStubs.tcl application found in the Tcl [14] sources into
a set of packages critcl [3] could use to generate the nec-
essary C code just from .decl files.

Beyond that nothing much can be said about the history
of the package, given that it is only a few months old1, and
very much a work in progress.

3. DESIGN & IMPLEMENTATION
First, images are values. This design decision is inherited

from the “Critcl Image Processing” code [1] CRIMP is based
on.

While this is a disadvantage memory-wise, with the inter-
mediate results of operations piling up even for things were
in-place processing would be possible, it makes for much
easier semantics too, with processing pipelines constructed
easily. And going back to memory, most intermediate re-
sults are likely to be reclaimed quickly, i.e have only a very
short life with a refcount > 0.

A semi-issue with the representation as values is that they
have a string representation, naturally, and thus are acces-

1The work started June 25, 2010



Name Author License Notes
pixane [4] Evolane QPL non-free binaries
tclgd [5] Karl Lehenbauer BSD chart drawing, → libgd
tkimg [6] Jan Nijtmans BSD Tk bound, focus on file I/O
megaimage [7] George Peter Staplin BSD basic ops + chart drawing, abandoned
(tcl)image [8] Jim Garrison GPL I/O, scanner & OCR bridge; No repository/files
tclmagick [9] Rolf Schroedter & David Welton BSD → ImageMagick / GraphicsMagick
imgop [10] Emmanuel Frecon BSD →tkimg, pure Tcl, exec ImageMagick
tkpng [11] Michael Kirkham BSD Tk bound, PNG I/O only
LRIPhoto [12] David Zolli OLL

Table 1: Other image handling packages

sible to all Tcl commands. Doing this is not recommended
however as with images shimmering is quickly expensive in
both time for the (re)construction of representations and
memory used. It is best to use the accessor commands pro-
vided by the package instead, to obtain such information.
They know the internal structure and can pull the various
pieces of data out of it without requiring shimmering.

Here the original internals were modified and refactored,
with the original list representation replaced by new
Tcl ObjType’s specifically geared towards storing image types
and images.

For a deeper look into the internals of the representation
see figure 1 below. I am not going into the image types
shown there here, save for table 2 on the next page providing
a short overview of what we have and may get in the future.

Figure 1: Image representation

Continuing on to the functionality the package is orga-
nized into two layers and five main categories. At the bot-
tom the primitives implemented in C, and then a Tcl layer
on top of that which implements the policies and heuristics
for their easy use [15]. See figure 2 below for a visualization
of this structure.

Figure 2: Package structure

Of the five categories both Support and Conversion are
relatively small and bounded in size, i.e. with little to no
opportunity for extension. C support is the Tcl ObjType’s
for the images and image types, the Tcl layer contains com-

mands to handle convolution kernels and function tables,
see table table/support on page. Further, the conversion
between image types is bounded by the set of types sup-
ported and the feasability and/or sensibility of conversion.
See table 3 below for an overview.

→ rgba rgb hsv grey8
rgba X X X, split
rgb X X, split
hsv X X split
grey8 join join join

Table 3: Image type conversions

For accessors we have the basic ones for extracting the
data found directly in an image, see again figure 1, and then
higher level ones, image histograms and statistics. This area
is thus quite small as well right now, but should have more
potential for extension than the two discussed before.

The last two categories, I/O and image manipulation will
be the big ones, also with the most potential for extension,
with manipulation rating higher on both than I/O. The for-
mats currently supported by the latter are shown in table 4
below. A few other relatively simple formats, like Windows
BMP, should be implementable in Tcl as well, however for
the more important formats, like PNG [17] and JPEG [18],
I expect to not only require C, but also the use of external
libraries. Going there might force the use of Tcl 8.6 as well,
where the function TclLoadFile() is public [19]. A related
issue still not clear at this point in time with respect to this,
i.e. external libraries, is how to handle the differences be-
tween regular use as package, and use within starkits and
-packs.

Format Language Read Write
Tk [13] C X X
PPM [20] Tcl X X
PGM [20] Tcl X X
strimj [16] Tcl X

Table 4: Supported external image formats

A very condensed overview of the currently existing ma-
nipulation and support commands can be found in the tables
5 and 6 on the next page.

While this may look like a lot it should be noted that these
are all still very basic. The only place where we are already
going to higher levels are the commands for the creation of
image pyramids.



Name Colorspace #Channels Data/Channel Data/Pixel Notes
rgba RGB 4 1 Byte 4 Byte
rgb RGB 3 1 Byte 3 Byte
hsv HSV 3 1 Byte 3 Byte
grey8 Greyscale 1 1 Byte 1 Byte
grey16 Greyscale 1 2 Byte 4 Byte Rudimentary
float Float.Point 1 4 Byte 4 Byte Rudimentary
grey32 Greyscale 1 4 Byte 4 Byte Future
bw Black/White 1 1 Bit 1 Bit Future

Table 2: Image Types

rotate 90 ◦ (counter)clockwise, half turn
flip horizontal, vertical, diagonals
matrix Arbitrary projective transforms
resize crop, cut, expand, up- & downsample

decimate, interpolate
alpha blend, over, set, opaque
binary add, subtract, difference

multiply, screen, max, min
blank
montage horizontal, vertical
morph erode, dilate, open, close

gradient, igradient, egradient
tophatw, tophatb

filter convolve, rank
remap general, invert, solarize, (de)gamma

thresholds
pyramid gauss, laplace, generic
wavy effect, inherited
psychedelia effect, inherited

Table 5: Manipulation commands

kernel make, transpose
table identity, invert, solarize, (de)gamma

thresholds (above, below, in-, outside)
gauss, linear, stretch, log, sqrt, eval

map s.a.

Table 6: Manipulation support commands

Image processing is a large field and we should be able to
add to this package for years to come. Some of the possibil-
ities will be addressed in chapter 5.

4. BUILDING
Going forward I have to address a few issues with building

this package. While the inherited use of critcl [3] has made
this relatively easy, i.e. just run critcl -pkg crimp.tcl,

it is not all roses.
First, it is necessary to hack the package underlying it

a bit. It comes with the C files for the Tcl/Tk 8.4 stub
declarations to avoid the need for an explicit stub library to
link against. CRIMP however is based on Tcl 8.5, so we need
its stub tables and C files. While a fairly easy replacement
having to do it is a barrier to use. It would be, IMHO, much
better if critcl could infer the correct version to use from
the package require Tcl ... statement found in CRIMP’s
sources.

Then comes the issue of the application not having an

explicit exit command. Which means that when we use
critcl -pkg to build CRIMP’s shared library for distribution
the application will not exit, but enter the eventloop started
by the package require Tk.

Beyond these bugs we have a number of smaller annoy-
ances, namely the need to explicitly list the Tcl files used
by the package (via critcl::tsources), instead of infering
them from the executed source command, and, similarly,
the need to explicitly use critcl::config tk 1 to signal
that this is a Tk package, instead of infering the same from
the package require Tk.

5. FUTURE DIRECTIONS
Compared to the short history shown in chapter 2, I hope

that the future of CRIMP is much longer and enduring. It is
certainly filled with lots of work needing to be done.

Here I will mention only a few things I consider to be in-
teresting, and otherwise refer to the ticket system reachable
through CRIMP’s Wiki page [2], both for getting a list of ex-
isting ideas, and as the place where more can be entered,
hopefully even with implementations.

1. The C level primitives currently have a great deal of
redundancy in them, like replicating code for RGB and
HSV, etc. stuff which is formally different, yet identi-
cal in code.

Cleaning this up should be a medium-sized project. It
is not trivial IMHO, because of the opposing tension to
have the whole code of a primitive in a single function,
to enable compilers to perform lots of optimizations,
like loop unrolling and such. Which is something we
really should preserve.

2. Most image processing tasks are what is called “em-
barassingly parallel”. Thus an “easy” path to higher
performance should be to slice an image and then dis-
patch the parts tiles, stripes) to many threads which
can then make easy use of today’s multi-core proces-
sors.

This requires more refactorization of the C layer, mov-
ing the actual functionality into functions which are
separate from the API functions. With that in place
we can then add the slice’n’dice code and the thread-
management.

3. Better algorithms, either faster, or conserving memory.
For example, the current convolution filter primitives
are implemented in the spatial domain. An FFT based
implementation should be faster, especially for large
kernels.



That said, FFT is a useful primitive in its own right,
and should be exposed, not just used for convolution.

4. Another venue to explore is dynamic code generation,
in various forms.

Our use of critcl [3] already allows a bit of this, al-
though it requires an external compiler, which is not
present everythere. Even so, when we come to im-
plementing the binary morphology operators we can
already follow Leptonica’s [27] route which is to gen-
erate C code for a number of important structuring
elements (SEs) for full performance, and falling back
to a general implementation for anything outside of
that set.

With a truly integrated compiler we would be able
to do one better, generating C code for any SE, which
then gets compiled to machine code. Then add caching.
Another possibility, skip C and the compiler and use a
general IR instead, like the input for LLVM, essentially
a portable assembler.

5. Higher level operations for the processing and analysis
of photos, like

(a) Fully automatic contrast enhancement.

(b) Fully automatic panorama stitching. This alone
will require operations like SIFT2 keypoint[24]
extraction and matching, computing projective
transforms, RANSAC [25], etc.

(c) Construction of 3D information, lots of overlap
with the previous point, plus bundle-adjustment,
Levenberg-Marquardt [21], generally “Structure
from Motion” algorithms.

This then goes on into the wider field of pho-
togrammetry and mapping.

(d) Face detection and recognition.

(e) General object detection and recognition.

(f) Generally computer vision [22].

6. Higher level operations for the processing and analysis
of documents, like

(a) Page segmentation (text/image areas, fore/background).

(b) Detection, analysis and removal of document warp.

(c) OCR

(d) Barcode detection, recognition, and extraction.

In conclusion, the Fossil [26] repository containing CRIMP’s
sources can be reached via the package’s Wiki page [2] and
is open to all and sundry to provide ideas, code, bug reports
and -fixes, etc.

APPENDIX
A. REFERENCES
[1] Andrew M. Goth, Critcl image processing.

http://wiki.tcl.tk/26052

[2] Andreas Kupries, CRIMP.
http://wiki.tcl.tk/crimp

2Or other feature detection algorithm

[3] Jean-Claude Wippler, Steve Landers, CriTcl.
http://wiki.tcl.tk/critcl

[4] Evolane, pixane.
http://www.evolane.com/software/pixane/

[5] Karl Lehenbauer, tclgd.
http://code.google.com/p/flightaware-tcltools/

[6] Jan Nijtmans, tkImg.
https://sourceforge.net/projects/tkimg/

[7] George Peter Staplin, megaimage.
http://whim.linuxsys.net/files/

megapkg rev 2415.tar.bz2

[8] Jim Garrison, tclimage.
http://sourceforge.net/projects/tclimage

[9] Rolf Schroedter, David Welton, tclMagick.
http://tclmagick.sourceforge.net/

[10] Emmanuel Frecon, imgop.
http://www.sics.se/emmanuel/?Code:imgop

[11] Michael Kirkham, tkPNG.
http://www.muonics.com/FreeStuff/TkPNG/,
https://sourceforge.net/projects/tkpng/

[12] David Zolli, LRIPhoto.
http://wfr.tcl.tk/LRIPhoto (French)

[13] Various, Tk. https://tcl.sourceforge.net

[14] Various, Tcl. https://tcl.sourceforge.net

[15] Jean-Claude Wippler, Poli-C.
http://wiki.tcl.tk/polic

[16] Richard Suchenwirth. Strimj.
http://wiki.tcl.tk/strimj

[17] PNG Homesite.
http://www.libpng.org/

[18] JPEG Committee Homepage.
http://www.jpeg.org/

[19] Kevin Kenny, TIP 357.
http://tip.tcl.tk/357

[20] Jef Poskanzer, Portable any map.
http://en.wikipedia.org/wiki/Portable anymap

[21] Wikipedia, Levenberg-Marquardt.
http://en.wikipedia.org/wiki/

Levenberg-Marquardt algorithm

[22] Wikipedia, Computer Vision.
http://en.wikipedia.org/wiki/Computer vision

[23] Wikipedia, Computer graphics.
http://en.wikipedia.org/wiki/Computer graphics

[24] Wikipedia, SIFT. http://en.wikipedia.org/wiki/
Scale-invariant feature transform

[25] Wikipedia, RANSAC.
http://en.wikipedia.org/wiki/RANSAC

[26] Richard Hipp, Fossil SCM.
http://www.fossil-scm.org

[27] Dan Bloomberg. Leptonica. http://leptonica.org/

http://wiki.tcl.tk/26052
http://wiki.tcl.tk/crimp
http://wiki.tcl.tk/critcl
http://www.evolane.com/software/pixane/
http://code.google.com/p/flightaware-tcltools/
https://sourceforge.net/projects/tkimg/
http://whim.linuxsys.net/files/megapkg_rev_2415.tar.bz2
http://whim.linuxsys.net/files/megapkg_rev_2415.tar.bz2
http://sourceforge.net/projects/tclimage
http://tclmagick.sourceforge.net/
http://www.sics.se/emmanuel/?Code:imgop
http://www.muonics.com/FreeStuff/TkPNG/
https://sourceforge.net/projects/tkpng/
http://wfr.tcl.tk/LRIPhoto
https://tcl.sourceforge.net
https://tcl.sourceforge.net
http://wiki.tcl.tk/polic
http://wiki.tcl.tk/strimj
http://www.libpng.org/
http://www.jpeg.org/
http://tip.tcl.tk/357
http://en.wikipedia.org/wiki/Portable_anymap
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/RANSAC
http://www.fossil-scm.org
http://leptonica.org/

	Overview
	History
	Design & Implementation
	Building
	Future Directions
	REFERENCES -9pt 

