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Abstract

Recent work on the Extended Object Tcl (XOTcl) was geared towards the orthogonality,
the ease of use, the productiveness, and the tailorability of the language. The result is an
innovative object-oriented language framework which serves for developing a family of object-
oriented Tecl dialects. In this work-in-progress report, we map the background and history of
advanced language constructs (i.e., mixin classes, filters, method delegation) and their continued
refinement (i.e., transitive mixins, mixin and filter guards). We present the infrastructure for
creating derivative Tcl OO dialects (i.e., creating object systems and their structural relations,
assembling base object behavior). A canonical model and infrastructure of parametrization of
commands, methods, and objects is presented. Important steps of internal re-designing and
refactoring (callstack and object life-time management) are discussed. Execution time and call
throughput measurements for basic object life-time and method dispatch scenarios are reported,
exhibiting substantial improvements over the XOTcl 1.6.x branch and TclOO 0.6.

1 Introduction

In this paper, we review the continued development of the Extended Object Tcl (XOTcl) language
and programming framework. We demonstrate major feature additions and enhancements since the
initial XOTcl presentation in early 2000 [16]. Against this background, we shall build up an overview
of future directions in the ongoing development of a revised XOTcl 2.x infrastructure. XOTcl 2.x
targets language-oriented programming by providing a framework for developing derivative object-
oriented Tcl dialects and embedded, domain-specific languages. First, however, we shall briefly
recall XOTcl’s history which continuously led to developing XOTecl 2.x.

The 1.x branch of the Extended Object Tcl (XOTcl) language was originally designed to provide
language support for realizing object-oriented design patterns [7] in the Tcl scripting language
[9]. The language represented an important contribution, both as an academic and as a language
artifact. Consequently, to this date, XOTecl is documented in more than 20 publications (see [25]
for an overview).
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The object system of the Extended Object Tl (XOTcl) has two properties, different from many
other object-oriented languages: (1) it is object-centric (rather than class-centric such as C++, Java;
see [24]) and (2) it supports dynamic relationships between objects. In class-centric object systems,
the properties of objects are solely defined by the classes. Therefore, in class-centric approaches, the
relation between a class and an instance of this class is immutable. In an object-centric approach,
all information about the object is contained in the object itself (e.g., its variables). Objects can
have object-specific properties which are not defined by any class of which the object is member
(e.g., object-specific methods). Objects can have as well relations to classes which act as object
factories and method repositories.

In XOTcl’s object-centric approach, all relations between objects and classes or between classes
themselves can be changed at any time, for instance, to reflect changes in object roles (e.g., students
become employees) or to add/remove behavior to single or multiple objects dynamically (e.g., add
logging, visualizations of structural object relations, etc.). All kinds of object relations can be
altered. For example, one can change superclass relations of classes or re-class objects. In addition,
member definitions for objects and classes are mutable at runtime so that methods and variables
can be added or removed dynamically.

XOTecl delivers advanced object-oriented abstractions such as mixin classes. These abstrac-
tions were incorporated in response to the analysis of common abstraction mismatches observed
for object-oriented designs [9]. To overcome such mismatches, the language supports instantiating
design patterns [7] based on a minimal set of language constructs for object composition and mes-
sage interception, i.e., filters [9] and mixin classes [14, 15, 28]. XOTcl was one of the first languages
providing this kind of language-level support for design patterns.

The set of language features initially presented in February 2000 [16] was conceptually complete
and so entered the major release at the root of the 1.x branch in November 2002. This original
feature set included models of multiple class-based and mixin-based inheritance (i.e., per-object
and per-class mixin classes), filters as a message interception technique, and a flexible scheme of
object and class aggregation through the integration with Tcl namespaces. In addition, constructs
to express constraints over object-type behavior were provided, i.e., invariants as well as pre- and
post-conditions. Since then, the XOTcl 1.x language has seen a considerable number of feature ad-
ditions and enhancements. These were motivated by incorporating findings of our ongoing software
engineering research and by the experiences gathered in developing XOTcl-based applications.

The remainder of this paper is organized as follows. To begin with, we trace the history of major
language concepts and their further-development in Section 2. This spawns the general background
for our work on XOTcl 2.x which is sketched in the two follow-up sections: Section 3 introduces the
reader to novel language features and feature consolidations achieved for XOTcl 2.x. Section 4, on
the contrary, maps XOTecl 2.x implementation internals and major refactorings. Finally, in Section
5, we report on a first, tentative performance evaluation obtained from profiling essentials such as
object generation and method dispatches. We conclude by summarizing on lessons learned and on
remaining challenges (see Section 6).
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2 The Evolution of XOTecl 1.x

Concept-wise, XOTcl’s mixin classes were refined to realize the concept of transitive mixins [28].
Transitive mixins provide for the orthogonal refinement between mixin-based extension components,
rather than the mixin-based extension of base components alone. With transitive mixins, it is
possible to mix-in class trees into target objects and target classes explicitly, as well as to apply to
the targets implicitly the extension behavior mixed into the mixin-classes themselves (i.e., multiple
layers of mixins are applied by transition). This increases orthogonality and facilitates mixin-class
management. A further improvement was the introduction of predicate expressions (guards) for
the conditional dispatch of filters and for the conditional injection of mixin classes. This allows for
modeling much more detailed interaction semantics between objects and classes, as suggested by
the subject-oriented programming approach (see, e.g., [19]).

Another important conceptual addition are slots (starting with XOTecl 1.5). Slots are mediator
objects owned by classes which provide means to define instance fields and extensible protocols for
interacting with them. By extensible, we mean that object field behavior can be specified which
goes beyond the fixed accessor/mutator protocol. Also, means of method delegation were added
(i.e., per-object and per-class forwards). Moreover, non-positional method parameters [26] including
extensible type predicates (the so-called check options) were realized.

The XOTecl 1.x language and its infrastructure components have turned into vehicles for research-
as well as production-grade application development. In the context of the web application frame-
work OpenACS [18], XOTcl-based framework extensions (in particular an OO layer on top of the
procedural core infrastructure; see [11]) and application modules were developed. Examples include
the versatile wiki framework XOWiki [12] and the object remoting bundle xorb [20]. Beyond Open-
ACS, the web framework ActiWeb [16], and the service-oriented, peer-based middleware framework
Leela [27] are written in XOTcl. For realizing role-based access control (RBAC) and RBAC-specific
role engineering, XOTcl was chosen as the programming infrastructure for the toolkits xoRBAC
[13] and xoRET [21], respectively. More recently, the XOTcl-based framework POKER [22] was
presented which assists at realizing extensible, event-based policy infrastructures.

XOTecl has reached a much wider audience through industry adoption: Archiware [1] offers
high-performance backup and restore products using XOTcl-based components. Cisco has been
reported to have adopted XOTecl along with Tcl for embedded systems running its router and
firewall products. More recently, Cisco sponsored the development of an XOTcl plug-in for the
Eclipse Dynamic Language Toolkit (DLTK; [3]). Finally, XOTecl ships with major OS distributions
and development packs, such as Mac OS X 10.4 (Tiger) and Debian Lenny.

Last but not least, XOTcl served as the conceptual basis for TclOO, defined in TIP#257 [5].
After reviewing the existing Tcl extensions for object orientation, many of the XOTcl concepts
(in particular, mixin classes, method delegation, filters) were eventually judged to be suitable for
entering the core OO infrastructure TclOO (see, e.g., [4, 5]), which is included in the forthcoming
release of Tcl 8.6. TclOO is ,intentionally, a non-compatible subset of XOTcl 1.x.
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3 Beyond XOTecl 1.x

During developing and discussing TIP#257 [5], a major issue arose regarding the primary objective
of a core OO extension to Tcl: Was it to be designed as the long-awaited OO dialect for Tcl?
Or, was it to serve for hosting multiple, existing Tcl OO dialects? In response to this thread, the
TIP#279 [10] proposed a framework for building Tcl OO dialects. Based on this TIP and our
reference implementation, we commenced the parallel development of an XOTcl 2.x branch, aiming
at language-oriented programming [6] for Tcl and beyond.

The modified XOTcl 2.x language sets out to consolidate the range of existing features and, at the
same time, to generalize XOTcl as a language for deriving and hosting object-oriented Tcl variants.
In the following sections, we provide a practical overview of the forthcoming XOTcl 2.x release. We
will focus on the framework aspects to support a family of object-oriented languages based on a
common set of features. Also, we will introduce selected features improving the orthogonality and
extensibility of the XOTcl 2.x language.

3.1 Language-Oriented Programming

General-purpose OO programming languages, such as XOTcl, serve as hosting languages for derived
OO languages and embedded domain-specific languages (so-called internal DSLs [6]). In order to
engineer derivative languages, it is often necessary to tailor their OO feature set towards the actual
needs of some application. By preserving, and eventually only hiding, the general-purpose language
feature in the DSL, the host language introduces unwanted complexity and the risk of breaching
DSL semantics by the DSL-using developers. Hence, to anticipate such risks, novice DSL-using
developers must take a steep learning curve to get acquainted with the entire feature set of the
hosting language. From the perspective of the XOTcl 2.x infrastructure, Tcl OO dialects (including
the XOTcl 2.x language itself) are examples of such derived languages. Judging from the high
number of available Tcl OO dialects, the basic concepts of derived languages seems to be well
accepted by the Tcl community.

The XOTecl 1.x language already provided a powerful metalevel programming model (e.g., re-
ferred to as “metaobject protocol” in CLOS [8]). It provided runtime access to selected language
primitives of the XOTcl 1.x language through the extensive introspection capabilities (e.g., info
operations), intercession through meta-programming and interception techniques (filters and mixin
classes), and meta-classes. However, the metalevel programming capabilities were aligned to the
basic XOTcl 1.x language model alone, disallowing access and mutation of certain model elements
(e.g., the root level of the object system). In XOTcl 2.x, the emphasis is on opening up not only a
single language’s set of primitives but also on introducing primitives to specify a language model
as such. Derived language models, then, become accessible through their own metalevel program-
ming model. Abstractions and language model semantics for derived languages (e.g., the XOTcl 2.x
language) can directly be specified in this host language (hereafter, the XOTecl 2.x infrastructure).

The new XOTcl 2.x infrastructure delivers an OO language framework to assemble different
object systems from a minimal core set of entity types, relationship types, predefined methods,
gluing Tcl commands, and a shared runtime infrastructure (e.g., a versatile, directly accessible
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method dispatcher). In the following, we outline the essentials of the XOTcl 2.x infrastructure by
giving examples of the XOTcl 2.x language implementation. For a detailed, yet slightly outdated
presentation see TIP#279 [10].

The XOTcl 2.x infrastructure is defined based on a set of language-programming primitives
which are exposed at the scripting level (in the xotcl namespace). Using these primitives, object
systems can be specified, e.g., by defining their own basic class hierarchies and method sets. A new
object system can be defined via the command ::xotcl::createobjectsystem (see also Listing
1). This commands takes as parameters the name of the meta-class object used for defining classes
and a root class object which describes the common behavior of all objects.

::xotcl::createobjectsystem ::xotcl::Object ::xotcl::Class

Listing 1: Defining the Root Level of the XOTcl 2.x Language

These base objects (i.e., ::xotcl::0bject and ::xotcl::Class in Listing 1) do not carry any
behavior, i.e., they don’t have any predefined methods attached. A language engineer can use
methods (in the OO sense) of a predefined (and extensible) method set (e.g., Tcl/C commands)
and bind these methods under arbitrary names to the base objects.

#

# an XOTcl/C command: Class.alloc ()

#

::xotcl::alias ::xotcl::Class ::xotcl::cmd::Class::alloc
#

# a Tcl/C command: Object.append ()

#

::xotcl::alias ::xotcl::Object append —objscope ::append

Listing 2: Assemble the Object Behavior from XOTcl/ Tcl Command Sets

This initial method binding can be achieved for every class/object by using the ::xotcl::alias
command (see also Listing 2). This primitive permits the language developer to register XOTcl/C
or Tcl/C commands as well as Tcl procs as object methods under an arbitrary name. This binding
does not incur any performance penalty. Single commands and procedures can be bound to several
receiver objects, allowing for new forms of reuse and encapsulation. Tcl/C commands can further be
bound to the object scope by using the —objscope flag so that they operate on the object variables.
In addition, the language developer can use method delegation to centralize behavior (i.e., by using
forward).

::xotcl::relation ::xotcl::Class superclass ::xotcl::Object
::xotcl::relation ::xotcl::Object class ::xotcl::Class
::xotcl::relation ::xotcl::Class class ::xotcl::Class

Listing 3: Defining Basic Relations of the XOTcl 2.x Object System

So far, the XOTecl 2.x language model describes two base objects with some basic behavior. However,
the base objects do not appear to be related at all (apart from exchanging messages, if at all). In
a next step, the language designer can define structural relations between the base objects (e.g.,
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class, superclass, mixin) by using the : :xotcl: :relation command. In Listing 3, this command
is used to lay out the three fundamental relational axes of the XOTcl 2.x object system.!

XOTecl 1.x, as well as derived languages based on the XOTcl 2.x infrastructure, appear weakly
runtime type-checked. The signature interface of objects, i.e., their object-types based on method
signatures as well as the scoped visibility and accessibility of object members, is enforced at invoc-
ation time of methods. When designing a derived language core, even this weak form of typing can
be bypassed. A generic dispatcher infrastructure (: :xotcl::dispatch, see also Listing 11) permits
the language developer to dispatch predefined, C or Tcl implemented methods on arbitrary objects,
regardless of whether they appear available or accessible along the precedence path or not. This
mechanism can be used for example for serialization or other introspection purposes.

#

# Perform a call to ”::Foo.exists(bar)” without a prior method registration
#

# ::xotcl::dispatch <object|class> <command|method> ?parameters ...7

::xotcl::dispatch ::MyObject ::xotcl::cmd::Object::exists bar

Listing 4: Objects receiving ”alien messages”

This language programming infrastructure provides extremely flexible instruments to create Tcl
0O dialects as well as custom language constructs for application frameworks and internal DSLs.
The XOTecl 2.x framework hosts as well a language mostly compatible with XOTcl 1.x, built solely
using these primitives.

3.2 Objects as Methods and Submethods

Orthogonal, procedural refinements in Tcl are typically realized through wrapper procedures which
rename the original command and provide a new command with the same name. Alternatively,
commands may be shielded by an explicit dispatch procedure, using interp hide and interp
invokehidden. The new or shadowing procedure might or might not delegate to the renamed or
hidden command.

In XOTecl, object behavior is made extensible through method combination, fusing inherited
and local versions of a method. One can shadow methods by defined same named methods and
delegate to the shadowed methods via next. Shadowing of methods can be achieved either through
subclassing, mixin classes, or filters. However, in XOTcl 1.x, it is not possible to overload, extend or
shadow subcommands of methods (like subcommands for info or string). Consider the example
of the XOTcl info method used for introspection: The command o1 info class returns the class
of the object o1l. While the info method can be easily shadowed through method combination,
e.g., a mixin class defining an info method, the class subcommand cannot (in XOTcl 1.x).

To overcome this limitation, XOTecl 2.x provides for language-programming primitives (e.g.,
::xotcl::alias), object aggregation, and method delegation to dispatch objects like methods.
This means that the object name can be used as a method, and the methods of this object appear

INote, that the ::xotcl::createobjectsystem implicitly sets this triad relation for the previously created base
objects.
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as submethods. There are two implementation variants available to expose objects as methods or
submethods: method delegation (i.e., forward) and nesting objects. Based on method delegation,
introspection was redesigned in XOTcl 2.x using objects (i.e., : :xotcl: :objectInfo and : :xotcl::
classInfo). They are registered with : :xotcl::0bject and ::xotcl::Class, respectively, under
the name info. These info objects own methods like class, vars, etc. which, in turn, appear
as submethods of the info method. By applying mixin classes or filters on the info objects, the
info submethods can be refined. Consider an advanced scenario. An application must stream the
states of its objects into a string notation to transfer objects and their states between processes or
threads through message passing. In such a scenario, the application can devise a mixin extension
Serializer which wraps around relevant methods of the info objects, in particular vars, to
introspect on object variables and to produce a script fragment. This script is then evaluated in
the new execution context (i.e., the target interpreter) to replicate an object state (i.e., its object
variables and their current values).

Apart from method delegation, object aggregation can be used to obtain refineable submethods.
This technique is, for instance, used in the slots [25] infrastructure in XOTcl 2.x. Nested objects
are exposed as methods owned by their parent objects. This allows to dispatch method calls to
the nested objects in a notation closely resembling the subcommand convention for standard Tcl
commands, such as string, info, etc. Depending on the nesting level, an arbitrary number of
dispatch levels may be achieved. However, nesting objects for creating extensible submethods is
always limited to the per-object scope. Hence, classes may not provide such submethods to their
instances or have them inherited through their subclasses. Also, nested objects are subjected to
the recreation of their parent objects. In such scenarios (e.g., the info implementation), method
delegation is preferable.

To sum up, objects as methods and submethods offer the following advantages: (1) It is possible
to register and de-register not only methods (as explained above), but any kind of subcommands
under arbitrary names. (2) The registration and de-registration can happen at runtime. (3) The
technique can be used recursively. (4) One can equally use interceptors (filters, mixin classes) at
the submethod level.

3.3 Generalized Interfaces for Parametrization

A major achievement is the unification and refactoring of the parametrization infrastructure in
XOTecl 2.x. Prior to this, the various concerns of parametrization (e.g., specification of parameters,
value parsing, default values, validation of values, handling of required parameters, error messages
and introspection) appeared scattered over multiple implementations in the C and XOTcl code
base. For implementing Tcl commands in C, it is current practice to implement argument checking
(number of arguments, handling of value constraints, options etc.) separately for each and every
command. Providing consistent behavior and error messages requires redundant work and main-
tenance efforts. The capabilities of the parameters for Tcl procs are, as well, sufficiently different
from the C level. Many C implemented commands (like set) allow a single optional argument while
this is not language-supported for procs, which provide only optional and variable arguments (via
args) or arguments with default values to express optionality.
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3.3.1 Defining, Evaluating, and Applying Parameters

In general, parametrization of differences [2] is a key principle of software reuse to express a family
of software components through a shared piece of code with built-in variation points. In object-
oriented software reuse, different variants of parametrization co-occur (and interact). In XOTcl [25],
for instance, the variety of parametrization mechanisms is considerable. They range from parametric
operations (i.e., commands, procedures, and methods) to object and class parametrization. The
latter are based on the precedence order of classes and allow to set certain instance variables
based on a parameter during object initialization. Furthermore, defining object-class and class-class
relationships is handled in XOTcl by parametrization (i.e., the superclass of a class is provided as
a parameter).

An important aspect of all forms of parametrization is specifying parameters and their prop-
erties. A parameter has an identifying name and a set of parameter properties. The parameter
properties realized are:

e requiredness (optional or required parameters),

e placement constraints (positional vs. non-positional parameters; sometimes called named
parameters),

e value constraints,

e conversion properties,

e evaluation properties, and
e parameter defaults

A parameter definition refers to the definition of a set of parameters with their properties (such
as the parameter definition of a method, i.e., its signature). The parameter definition provides
constraints about permissible arguments, when a method is called. We refer to the step of validation
of arguments as parameter evaluation or argument parsing.’

If a parameter is defined as required, the invocation must contain a value in its argument list. If
a parameter is declared positional, the according value for the parameter is found via the match-
ing position. If a parameter is non-positional, the value is provided together with the parameter
name as a pair. A value constraint specifies that a subset of the syntactically permissible values
is accepted. Conwversion properties can be used to specify type conversions of the passed values.
FEvaluation properties can be used to perform certain operations during the evaluation of values or
defaults. Parameter defaults are used when the argument vector did not provide an actual value
for a parameter. Instead, a default value is initialized for the parameter consumer.

Argument evaluation receives as its input a parameter definition and an argument vector. Dur-
ing argument evaluation, certain constraints specified in the parameter definition might not be
satisfiable, therefore error messages can be produced. After argument evaluation, a transformed
argument vector is available that has to be applied on the argument consumer. This parameter

2Note that, throughout the paper, we refer to parameter values as arguments.
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application is different depending on the kind of parameter consumer (i.e., a C function, a Tcl
procedure body, or an object). For example, object parameters apply to object variables.

Explicit parameter definitions can not only be used for consistent argument evaluation, but also
for producing consistent error messages, for facilitating parameter introspection (e.g., by providing
the developer with means to reason about valid arguments), and for creating documentation (e.g.,
by using parameter definitions directly for generation the documentation to reduce maintenance
efforts).

3.3.2 Parameter Interfaces in XOTcl 1.x and XOTecl 2.x

In XOTecl 1.x, programming interfaces for defining parameters were used at various places for
creating different kinds of parametric operations. Also, each of them was equipped with different
capabilities and a distinct syntax. XOTcl 2.x comes with a common parameter infrastructure. All
parameter definitions are parsed into a common C structure which is used for the following kinds
of parametrization:

e Parameters for C implemented commands. C implemented Tcl commands are defined by C
functions with a common interface. Usually, the called C function is responsible for processing
the input Tcl_0bj array (i.e., objv), to perform the appropriate conversions, and to generate
error messages. These tasks must be achieved for each and every C implemented Tcl command
separately. Providing consistent behavior and error messages causes redundancy. Introspection
is not possible.

In the XOTecl 2.x infrastructure, the method definitions of all C implemented Tcl commands
of XOTcl are defined in an signature definition language (in Tcl syntax) that supports the
parameter properties mentioned above (i.e., requiredness, positional vs. non-positional, typing
information, defaults, etc.). From these signature definitions, stub functions in C are generated
automatically. These stubs handle the parameter evaluation. The parameter definitions are
available at runtime for, e.g., introspection. More details are provided below.

e Parameters of C implemented methods are very similar to command parameters, but they
have to provide access to the currently active, method-owning object on which the method
has to be dispatched. In XOTcl 1.x, every method definition in C had to incorporate this
knowledge. In the XOTcl 2.x infrastructure, the parameter definitions for C implemented
methods are defined by the same signature definition language as command parameters (see
the previous item). The signature definition language allows to specify what kind of stub
should be generated (see for example the generation of stubs for C commands via xotc1Cmd
and for C methods via classMethod in Listing 5 on page 11).

e Parameters of Tcl implemented methods are defined in XOTcl 1.x in the procs and instprocs
definitions as an argument after the method name (same as for Tcl procs). XOTcl 1.x sup-
ports non-positional and positional parameters with value checking on non-positional para-
meters. Non-positional parameters can be defined as required and can have defaults. Since
non-positional parameters are not supported natively by Tcl, XOTcl converted internally the
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argument list to Tcl’s vararg interface (using args) and inserted a call to a specific handler
into the procedure body (i.e., : :xotcl::interpretNonpositionalArgs $args).

In XOTecl 2.x the method parameter definition is provided as an argument block following the
method name. The definitions are now fully orthogonal and allow the same set of parameter
properties (e.g., value constraints on positional and non-positional parameters, optional po-
sitional parameters, etc.). The same infrastructure for argument evaluation as for the other
parameter types is used (see Section 3.3.3 for more details).

o Object parameters provide means for the parametric configuration of objects during their
creation. The applicable parameters are determined by the precedence order of the classes (i.e.,
the class hierarchy and the mixin classes). Early versions of XOTcl provided the -parameter
interface for defining the parametric configuration of class instances, starting with 1.5 slots
[17] became available. The -parameter interface of XOTcl 1.x supported rich parameter
properties, however, they were substantially different to properties for method parameters
(e.g., deviating default handling and value checking). Besides, the -parameter interface did
not support required object parameters.

In the XOTcl 2.x infrastructure, the infrastructure for parameter evaluation is shared by object
parameters. Note that the parameter definitions are purely declarative, while the XOTcl
1.x object parametrization was procedural. That is, every word starting with a dash was
interpreted as a method name. In XOTcl 2.x, the object parameter definitions are collected,
for instance, from the slot definitions into a declarative structure used for argument evaluation.
To provide backwards compatibility, XOTcl 2.x adds an args at the end of the parameter
definition which is evaluated following XOTcl 1.x semantics.

3.3.3 Defining Parameters in XOTcl 2.x

The XOTecl 2.x infrastructure supports a canonical parametrization model and processing infra-
structure, based on a set of components and artifacts shared by command, method, and object
parameters. These components and artifacts distribute over two binding times in parameter hand-
ling, i.e., defining parameters and argument evaluation at invocation time. While the parameter
definitions for C implemented command and methods are processed during the compilation of
XOTecl, the parameter definition for Tcl implemented methods and object parametrization is situ-
ated at the scripting level. In the next few paragraphs, we discuss the parameter handling for C
implemented methods. Then, Tcl implemented methods and object parametrization are addressed.

Parameters for C implemented Commands and Methods As Figure 1 shows, the defini-
tions of the signatures for the C implemented commands and methods are provided by parameter
definitions stored into a separate file. This file (i.e., gentc1API.decls) is processed by a C code gen-
erator into a source code file containing the stubs and definitions (essentially the X0Tc1ParsedParam
structures) for all defined functions. The generated file is included into the XOTcl C source.

At runtime, the stub is used to invoke the C implemented commands and methods. When such a
function is called, the argument evaluator processes the provided arguments against the parameter
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Definition/ invocation time

<<artifact>>

Command Arguments
(raw)

<<artifact>> | <smanifest>>
Signature Definition <<component>>
9
(gentclAPL.decls) ( Glient (Caller)
| <<manifest>>  Parsing and compiling Dispatcher
A\ signature definition 5 (invokeCmdMethod)
<<component>> ’_x ..@éd )’
. S -
Cllerﬂ Y E\(\'b‘\ - <<artifact,comp: u:u;mb
(compiler) C-Code Generator od o) <<component>>
(gentclAPL.tcl) (tclAPI.h) { "
A processing arguments (ArgumentParse)
' according to signature A
<<artifact>> defintion <<manifest>> !
XOTclParsedParam <<artifact>>
parseContext

Figure 1: Handling of C Implemented Commands and Methods at Definition and Invocation Time

definitions. During argument evaluation, all basic type conversions, value constraints and default
value handling are performed. The result is called the parseContext which, essentially, manages
the raw and converted arguments in a canonical manner.

#
# XOTcl commands

#
xotclCmd alias XOTclAliasCmd {

{—argName ”object” —required 1 —type object}
{—argName ”methodName” —required 1}
{—argName ” —objscope”}
{—argName ” —per—object”}
{—argName ” —protected” }
{—argName “cmdName” —required 1 —type tclobj}
}
#
# class methods
#

classMethod alloc XOTclCAllocMethod {
{—argName ”name” —required 1}

}

Listing 5: Parameter Definitions for C implemented Commands and Methods

Listing 5 provides an example of the parameter definitions for the XOTcl command : :xotcl::
alias and the XOTcl method alloc. The parameter definition for the C implemented command is
defined as xotclCmd, while the definition for the C implemented method is marked as classMethod
(i.e., a method for the meta-class Class). A structure of nested Tcl lists is used for the language’s
syntax. Besides the parameter name argName, several parameter properties such as required and
type settings are provided in this example. The type property is not only used for value checking,
but as well a conversion property.

static int
XOTclAliasCmd ( Tcl_-Interp *interp , XOTclObject xobject ,
int withObjscope,

char sxmethodName,

int withPer_object, int
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withProtected , Tcl-Obj xcmdName) ;

static int
XOTclCAllocMethod (Tcl_Interp *interp, XOTclClass #cl, char xname);

Listing 6: Generated C Function Prototypes for Commands and Methods

The C code generator produces function prototypes for the command and method stubs. Listing
6 gives the prototypes for the signature definitions above. The listing shows that the current in-
terpreter is passed as the first argument. Non-positional parameters are converted per default into
separate integer arguments carrying the prefix with. XOTcl objects are passed in their internal
representation. For C implemented methods the class or object is provided as the second argument.

static int
XOTclCAllocMethodStub ( ClientData clientData, Tcl-Interp xinterp, int objc, Tcl-Obj

«CONST objv []) {
parseContext pc;
XOTclClass xcl = XOTclObjectToClass(clientData);
if (!cl) return XOTclObjErrType(interp, objv[0], ”Class”);

if (ArgumentParse(interp, objc, objv, (XOTclObject x) cl, objv[0],
method_definitions [ XOTclCAllocMethodIdx ]. paramDefs ,
method_definitions [ XOTclCAllocMethodIdx |. nrParameters ,

&pc) !'= TCL.OK) {
return TCL_ERROR;
} else {
char #*name = (char x*)pc.clientData [0];

parseContextRelease(&pc) ;
return XOTclCAllocMethod (interp , c¢l, name);

Listing 7: Generated Stubs for Argument Parsing and Error Handling

Finally, the C code generator provides a stub based on every signature definition. In Listing 7, we
show the stub for the alloc method. We learn that the argument evaluator ArgumentParse obtains
its definition from the global table method_definitions and provides it output as a parseContext
structure on success. Finally, the implementation of the alloc method is called with an arguments
compatible with the signature shown above.

Tcl implemented Method Parameters Tcl implemented methods are defined solely at the
scripting level (at runtime). The provided parameter definitions are transformed into the common
canonical structure X0Tc1lParsedParam upon definition time of the method. This structure is saved
in the C structure representing the XOTcl method (more specifically, in the deleteData of the
Tcl_Command structure). At invocation time, the parameter definitions are efficiently retrieved from
this structure and passed on to the argument evaluator, along with the actual Tcl_Obj argument
vector (i.e., objv). The resulting parseContext then serves for supplying the standard Tcl argu-
ment handling within the current call frame scope (for more details, see Figure 2). The argument
application happens in Tcl as usual via InitArgsAndLocals ().

Listing 8 contains an example with XOTcl’s parameter definitions. The syntax of the parameter
definitions is strongly influenced by OpenACS [18]. The example defines an unconstrained para-
meter a followed by an optional, non-positional parameter trace, a positional parameter b with an
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Figure 2: Handling of Method Parameters at Definition and Invocation Time

integer value constraint, and an optional positional parameter c. XOTcl users might notice that the
requirement of defining non-positional ahead of positional parameters has been lifted. Optional, po-
sitional tail parameters as commonly found in Tcl commands (e.g., set command, match patterns
for info commands, etc.)

Class create C

C method foo {a {—trace false} b:integer c:optional} {...}

Listing 8: Method Signature for a Tcl implemented Method

Object Parameters The parametric configuration of objects shares the same implementation
but differs from Tcl implemented methods in its semantics. While for method parameters, the
full parameter definitions are provided explicitly, the method definitions for object parameters
are assembled from configuration values of the classes along the precedence order. Note that the
precedence order can be changed dynamically in XOTcl (by defining different per-class mixins or
altering the class hierarchies). Therefore, the object parameter definitions might change during
runtime of a script.

In XOTecl 2.x, we use a scripted method named objectparameter that processes the slots of
classes and, so, assembles a parameter definition in the method parameter notation (see previous
paragraphs). With this, the same parameter parser is used to compile the computed parameter
definitions into the canonical C structure. The same XOTcl 2.x framework can be used for dif-
ferent OO dialects by providing their own implementation of objectparameter. Technically, the
parameter definition time denotes the moment of calling a configure method. The parsed para-
meter definitions are then cached internally in the class structure for efficient access at subsequent
invocation times (i.e., upon creating further offsprings of a class).

Class create Foo —parameter {a:integer,required {trace:boolean false}}

# Computed parameter definition:

# —a:integer,required {—trace:boolean false} —mixin:relation —filter:relation

# —class:relation args
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Foo create fl —a 123

Listing 9: A Backward-Compatible Parameter Definition for Object Configuration

Listing 9 gives an example of a class Foo which provides object parametrization for its future in-
stances. The parameter definition is here specified in the XOTcl 1.x parameter style for backward
compatibility. The comment shows the output of objectparameters. Note, that the object para-
meter definition contains the as well entries for the relation slots applicable for objects, namely
mixin, filter and class.

4 Redesign of Internals

The sections above covered changes in XOTcl 2.x which are conceptually different from XOTecl 1.x
and which are visible as extended or novel language features. In the following, we outline selected
changes in the implementation of XOTcl 2.x. These internal modifications make use of the improved
Tecl 8.5 core infrastructure. We limit ourselves to discussing two selected topics shortly, namely stack
management and the deletion logic.

4.1 Stack Management

An important area of change is stack management. XOTcl 1.x provided its own stack management
for keeping invocation-specific information on the stack (e.g. name of the actual class or object,
method names, stack frame types, etc.). This meant synchronizing two stacks, even under situations
where a Tcl stack frame pushed is not paired by an XOTecl frame (e.g., in Tcl procedure invocations)
or vice versa (e.g., invocations of certain C implemented methods). Additional complexity was
caused by realizing callstack transparency for upvar and the uplevel operations (to provide consistent
behavior when interceptors like mixins or filters are added).

In XOTecl 2.x, an integrated callstack management with Tcl 8.5 is adopted. Tcl 8.5 introduces
the long desired clientData in stack frames, that allows to construct new call frame types. XOTcl
defines three types of stack frames: object frames to make instance variable appear as local ones,
method frames for C implemented methods, and method frames for Tcl implemented methods. The
primary advantage of this modification is a unified stack management (e.g., size management) and
the avoidance of search efforts to link from XOTcl stack frame contents to Tcl ones, and vice versa.
Certain stack operations now turn out slightly more expensive since the search for XOTcl stack
frames must account for interleaving Tcl frames. Also, XOTcl exerts now less control about the
life-time of a stack frame (e.g., Tc10bjInterpProcCore () performs an implicit pop operation). The
original XOTcl-specific stack infrastructure is just kept for Tcl 8.4 backwards compatibility (which
might be dropped finally).

4.2 Deletion Logic

The design of the deletion logic of XOTcl distinguishes between the explicit and implicit destruction
of objects. An explicit destroy operation occurs when a script invokes the destroy method of an
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object explicitly (e.g., $obj destroy). An implicit destroy occurs when, e.g., a Tcl namespace
containing XOTcl objects is deleted. Or, when Tcl issues the C- level Tcl DeleteCommandFrom-
Token (). This function is called in various situations, such as creating Tcl commands with the name
of an XOTecl object, or renaming Tcl commands to an empty string. For these implicit cases, it is
essential that the object is actually deleted, regardless of whether the provided destroy methods
propagate to the top-level object destroy.

XOTecl 2.x performs the deallocation of objects fully symmetrically to their allocation. Objects
are always created by the class-level alloc method, and they are deallocated by the class-level
dealloc method. The object-level destroy finally delegates to dealloc. Implicit destroy operations
call dealloc which, in turn, calls the user-level destroy method, if needed.

The time of physically freeing object structures has changed in this process. In XOTcl 2.x, an
explicit activation count is maintained for object and classes. Object or classes, which are active
on the stack, are never physically destroyed. Upon pop operations, the activation count is checked.
When the activation count reaches zero, the objects flagged for deletion are deallocated. The explicit
activation count simplified the deletion logic significantly.

5 Evaluation

In this section, we report on a comparative evaluation of selected tasks in the XOTcl object system,
namely object creation, destruction, and method dispatches. We compare the XOTcl 2.0.0 develop-
ment version with XOTcl 1.6.0. The choice of the latter is due to the availability of profiling results
previously published (see [23]). All profiling tests are performed under Mac OS X on a 2.8 GHz
Intel Core 2 Duo processor. The programs were compiled with gee 4.01 with -g -0s and linked
against the same Tcl 8.5.7 library.

5.1 Creation and Deletion of Objects

The first test evaluates the performance of object creation and deletion in four variations: pure
object allocation (without constructors), object creation (with constructors), object creation with
parametric configuration, and object destruction. For the first test, XOTcl allows the generation
of objects without constructors via the method alloc. The second and third test assess creating
an empty object and creating an object with a single instance variable initialized during creation,
respectively (using the class Foo; see Listing 10). The TclOO equivalents are straightforward, i.e.,
alloc was emulated via object create.

set ¢ 100000
set ::i 0; run {::xotcl::Object alloc f[inecr ::i]} $c
set ::i 0; run {f[incr ::i] destroy} $c

Class create Foo
set ::i 0; run {Foo create f[incr ::i]} $c
set ::i 0; run {f[incr ::i] destroy} $c

Class create Foo2 —parameter {{x 1}}
set ::i 0; run {Foo2 create f[incr ::i]} S$c
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‘ set ::i 0; run {f[incr ::i] destroy} $c

Listing 10: Object Creation and Deletion

The results are summarized in Table 1. For every test, the execution time in microseconds is
given (lower is better). The results show that XOTcl 2.0.0 is significantly faster than XOTcl 1.6.0,
especially when variables are allocated and initialized during object creation. XOTcl 2.0.0 is more
than twice as fast as XOTcl 1.6.0. The tests also show that XOTecl 2.0.0 outperforms TclOO 0.6 in
these profiling results, especially for object deletions (i.e., more than 15 times faster).

Object System ‘ alloc ‘ create empty ‘ create with var ‘ destroy

XOTcl 1.6.0 4.23 7.89 13.59 3.57
XOTcl 2.0.0 3.69 5.00 5.90 2.95
TclOO 0.6 7.87 5.36 6.32 50.97

Table 1: Object Creation (without Constructor, with Constructor, with Parametrization) and Destruction

5.2 Dispatch Performance

The second test sets out to evaluate the dispatch performance together with argument evaluation.
The performance is measured in terms of calls per second. We compare here a method dispatch with
zero arguments args0, with three positional parameter args3, with two non-positional parameter
np2, and with a mixture of two non-positional and three positional parameters np2args3. While
the invocation for np2 is performed without actual argument (the default values are taken), the
invocation for np2arg3 specifies an argument for every parameter (see Listing 11).

Class create C

C method args0 {} {return 1}

C method args3 {x y z} {return $x}

C method np2 {{—a 10} {-b 100}} {return S$a}

C method np2args3 {{—a 10} {—b 100} x y z} {return $x}

C create cl

cps {cl argsO}

cps {cl args3 1 2 3}

cps {cl np2}

cps {cl np2args3 —a 20 —b 200 1 2 3}

Listing 11: Method Dispatch

Table 2 gives the number of dispatch operations per second (higher is better). Again, the results
show that XOTcl 2.0.0 performs significantly better than XOTcl 1.6.0. The empty dispatch without
arguments is about twice as fast, the dispatch of np2arg3 is even more than 4 times faster. Also,
XOTecl 2.0.0 provides a higher dispatch throughput than TclOO 0.6. We have not implemented non-
positional parameter handling, natively unavailable for TclOO. A Tcl-only implementation would
incur a significant overhead.
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Object System ‘ args0 ‘ args3 ‘ np2 ‘ np2args3

XOTecl 1.6.0 771,968 693,450 336,866 184,997
XOTecl 2.0.0 1,437,876 | 1,268,713 | 1,175,979 882,530
TclOO 0.6 1,264,366 | 1,119,037 n.a. n.a.

Table 2: Method Dispatch Throughput per Second

5.3 Memory Consumption

Finally, we compared the memory consumption per object (see Table 3). It is not sufficient to
compare the size of the object structures in the C program, since this will not account for pointers
to other Tcl structures like commands, namespaces and hash tables. Hence, we measured the gross
effect of creating objects in a running system. The test creates one million objects and compares
the process size before and after the creation of these objects. It divides the size by the number of
objects. For every system, the computed bytes per object are given (lower is better). The results

Object System ‘ memory per object

XOTecl 1.6.0 450
XOTcl 2.0.0 514
TclOO 0.6 1473

Table 3: Memory Footprint per Object

show that XOTcl 2.0.0 uses about 10% more memory per object than XOTcl 1.6.0. The differences
are most likely due to a more eager conversion of Tcl_0bjs to Tcl commands in XOTel 2.0.0.

5.4 Code Size

By generalizing the parametrization and factoring out common code, the size of the C code was
reduced by more than 2,500 LOC (about 20%). Yet, the functionality was extended significantly
and the performance could be improved (see above). The current version contains support for Tcl
8.4 and Tecl 8.5 with 8.4 compatibility requiring a significant code share (e.g., using client data on
the stack, function dispatch, variable handling). Dropping support for 8.4 would certainly entail a
further reduction in code size.

6 Summary

The Extended Object Tcl (XOTcl) language has diffused across the various Tel communities for
nearly ten years. In this time frame, it has been successfully adopted as a development platform
for a variety of commercial, as well as academic applications and application frameworks. Likewise,
it was subjected to research on language and application engineering. We started this paper with
an overview of how language concepts such as mixin classes and filters were refined over time and
how new features such as method delegation, non-positional parameter passing, and slots entered
the XOTecl language. This is explained against the background of XOTcl’s adoption in numerous
research- and industry-driven software development projects.
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In this paper, we expounded the details of the modifications and enhancements to XOTcl in its
2.x branch. First, we provided hands-on examples for language-oriented programming, i.e., creating
object systems based on bare objects and foundational relations between them, assembling object
behavior from command and method sets, and using dispatch bypassing. Second, we presented the
use of language-programming primitives, method delegation, and object aggregation to bind objects
as message receivers (methods) to other objects, allowing for new forms of behavioral refinements.
Third, we outlined the core ideas of a uniform programming model and combined infrastructure
for defining, evaluating, and applying command, method, and object parametrization in XOTcl
2.x. Finally, we discussed two major internal refactorings. On the one hand, XOTcl 2.x comes with
a callstack management largely integrated with the Tcl 8.5 callstack infrastructure. On the other
hand, the overall deletion behavior for the XOTcl object system and its inhabitants was refined. A
profiling-based evaluation showed that the XOTcl 2.x branch appears superior to XOTcl 1.6.0 in
terms of execution times for creating and destroying objects (under different initialization loads)
and in terms of call throughput for method dispatches (again, under different argument evaluation
requirements).

The contributions of this paper are threefold: (1) To begin with, the paper introduces newer
metalevel programming features (e.g., object system specification and method bindings) and illus-
trates that they emerged from the continued refinement of the XOTcl 1.x metaobject protocol.
However, there are also noteworthy limitations to the metalevel programming possible. The arsenal
of available Tcl commands (e.g., set, append, etc.) can only be used as methods within certain
boundaries. Also, parameter introspection under method delegation (i.e., applying info on the
delegation source on behalf of the target) is constrained. (2) Also, we exposed our motivation to
increase the orthogonality between existing (e.g., higher-level vs. lower-level parametrization inter-
faces) as well as between existing and new language features (e.g., parametrization and parameter
introspection). Hence, the XOTcl 2.x branch benefits from an improved separation of concerns.
For instance, object parametrization has been decoupled from higher-level features such as slots
and the -parameter interface. (3) We could demonstrate that these feature consolidations have
led to a more maintainable code base. At the time of writing, parametrization stubs for more than
100 C implemented XOTcl commands and methods are generated, including adapters for back-
ward compatibility. While this number will decrease due to continued consolidation, refactoring
and maintenance efforts were so substantially reduced. Also, the improved maintainability pairs
with an enhanced performance profile of the XOTcl 2 object system. While a set of conceptual
and implementation issues remains to be addressed, the XOTcl 2.x branch is, to this date, in a
functional and conceptually sound shape. We anticipate an initial release by the end of 2009. The
state of development achieved so far serves as a solid base for further-developing XOTcl 2.x towards
a framework for language-oriented programming.
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