

Tips for Object Architecture for
Development

TOAD:

By: Sean Woods

Presented to the 2009 Tcl Developer’s Conference

161

Abstract

Like a child at Christmas, Tcl
developers everywhere are unwrapping all
of the new functions of the Tcl8.6 core.
The feature everyone wants to play with
is, of course, TclOO. Our knight in
shining armor. The holy grail of core
team. Object Oriented programming is
right.in.the.core.

And now that it’s here we have to ask,
“and what exactly are we going to do with
it?”

This paper is Sean’s attempt to put
together the “Tcl Way” of writing code
for TclOO. Like everything else Tcl, it’s
not about tab spacing and pascalNotation
vs. underbars_uberalles. It’s about how
not to hang yourself with some of the rope
that the notation provides.

Along the way, Sean will provide a
few tidbits and gee-whiz tricks he’s
discovered/stole about TclOO.

Developer Biography

Sean Woods is a regular at the Tcl
Developers Conference. Known as “The
Hypnotoad” in the community, he is well
known for his off beat way to present
otherwise dry material.

Sean’s experience with Tcl goes back
to 1996, where he worked on a large scale
automation project for Kulicke and Soffa.
Sean currently uses Tcl/Tk to generate
and visualize simulations for the US
Navy.

Introduction

Like every great innovation, this paper
has a bit of a long story.

Fortunately, that story has already
been written. It’s in my paper for the ’06
conference entitled “Tao: The Tcl

Architecture of Objects”. So if you are
interested in the history, check it out there.

This paper, however, is for the living.
So, we have an official object system.

No more forging OO with our bare hands
from still molten steel like in the “good
old days”. You while you are still invited
to walk to school uphill, both ways, our
focus as a community should now be on
how to use this new system competently.

I have been OO programming in Tcl
for several challenging environments in
the past:

 Web portals
 One-off game projects
 A canvas-based ship description

editor
 An agent based fire-fighting

simulation
And over the years I have honed a

particular style. Everything presented are
concepts I’ve invented, and likely
reinvented several times, over the years.

Many of the concepts are stand-alone,
so you can feel free to rifle through the
bits you like and leave the rest.

All right, by this point you are either
interested enough to read on, or not. So
let’s just cut to the code.

The TOAD Way

The TOAD Way I like to think of as
the “least energy path” for software
development. Like all good Tcl
techniques, after you see it, you’ll just
find yourself doing it naturally.
(Assuming you haven’t been doing things
that way for years.)

Much of it protects you against many,
many, pitfalls that can crop up from
haphazard development techniques.

Use a Psuedo Language
My rule is if a snippet exists in three

places or more, it should be re-cast as a

162

procedure, a method, or a macro of some
sort.

Anyone who has ever had to clean up
someone else’s code (Or even worse, look
at your own code years later…) knows the
horror of “copy and sorta paste.” You
know what I mean, a 10 line routine that
is scattered ALL over the code. (Usually
complete with comment.) But 8/10 of the
copies contain a subtle change that you
completely overlook the next time you go
to copy and paste.

Well that tendency gets worse with
object oriented code. (And I speak from
experience.) The biggest offenders are a
pre-ambles we all seem to toss onto the
top of methods to put all the variables we

want in just the right place.
The example above is a common

design template in web development. We
get data in, in one form. We play with it.
We format it back to something the
webserver wants to see.

If you are building a webserver, each
method could be a page. You’d have foo,
bar, baz, bing, boom. Each does a
different page function. But for all of
them you have a common set of routines
that govern input handling, session
management, etc.

What I found helpful was to actually
wrap the key working parts in each page
around a procedure that added the “cut
and paste” to the top and bottom. In the
old days, I had to do it all up front with a
wrapper. But TclOO includes a powerful
set of tools that allow you do define

classes and objects on the fly:

So now, to build our pages instead of
having to copy and paste a ton of code we
simply:

 set ::preamble {
 # Load our variables
 variable bar
 variable bat
 set arg [my munge $theunmungedarg]
 # Begin with a blank result
 set result {}
 }
 set ::postamble {
 # Remunge our result
 return [my remunge $theresult]
 }

 proc pageMethod {
 class methodname body
 } {
 # Build a buffer that starts
 # with our preamble
 set methodbody $::preamble
 # Tacks on our body
 append methodbody \n $body \n
 # Tack on code that
 # transforms the result
 append methodbody \n \
 $::postamble \n

 # With the actual body built
 # define the method
 oo::class define $class \
 $methodname \
 theunmungedarg \
 $methodbody
}

 method foo theunmungedarg {
 # Load our variables
 variable bar
 variable bat
 set arg [my munge \
 $theunmungedarg]
 # Begin with a blank result
 set result {}

 …
 (the actual method)
 …

 # Remunge our result
 return [my remunge $theresult]
 }

163

This has an added advantage for
development: you can call these
pageMethod procedures again later to
reload the code without having to destroy
your original class first. For webservers, I
put the main class in one file, and the page
method in another so that I can re-load the
page generating code in a still-running
interpreter without having to completely
re-start the server.

And, of course, when you find some
funky fix than needs to be applied to the
front end or back end, you can update
your template generator instead of having
to apply the same fix in a dozen places.

Use dicts for arguments
The basic idea here is that we are now

in the 21st century. Software development
no longer assumes that you know
absolutely everything about everything
before you start coding. Largely because
all strategies evaporate on contact with the
actual implementation.

Now for small projects, and simple
functions, sure, you can always assume
that the number of arguments for a
function will never change. I have a
function that takes in a string, and output
another string, no brainer. If return a
simple mathematical transform of a fixed
number or parameters, sure.

But most functions involve the
interoperable machinations of the system.
And those change during the course of a

project. A lot. For open ended design I
recommend a complexly-simple style for
arguments. Don’t bother. Take in a single
argument, and that argument is a dict with
the actual arguments.

Again, the worst offenders tend to be
web portals. They love to pass you extra
data. And the form that data takes is pretty
free-form. And every once in a while, it
comes in useful!

So, for argument’s sake, lets have an
object “strawman”. Strawman generates
an on-screen display of various nodes, and
the redraw methods for each node type

take in a nodeid, and a color
Now, at some point your marketing

folks come back to you with a pile of
other things they’s like to see displayed.
Color. Stipple. Maybe even images. Ugh.
Do you really want to add an argument for
each one?

Oh sure, you could take in arguments
the tk way. But then you are stuck adding
the dashes, and then removing the dashes,
and really there’s an easier way.

Dicts.

oo::define strawMan redrawFoo {
 nodeid
 color
} {
 … (The actual code) …
}

oo::class create pageMake

pageMethod pageMake foo {
 … foo body …
}
pageMethod pageMake bar {
 … bar body …
}
pageMethod pageMake baz {
 … baz body …
}

164

In the example snippet above, we take
a dict defined by global_defaults and feed
them into local variables. We then treat
formatting as a dict, and dict with handily
will read each key/value pair and load
them in turn as local variables.

And so our drawing code can now
happily call $color and $stipple and
whatever else you find you need to
describe the object. It will always have a
value, as defined in $global_defaults.

Calls to this function would look like

this:
And of course, if you have more than

one method that uses the same basic
template, this idea can be combined with
the previous one. And no, you won’t get
me to make some horrible pun about
wrapping your dict.

How to hang yourself with Variables
All of this flexibility with wrappers

and dicts does come at a cost. You can get
overly clever and create an argument (be
it a direct argument or one passed in from

a dict) that is the same name as a state

variable in your object. For example:
Now, some other method, calling up

the poorlychosenexample variable will
see DEADBEEF instead of it’s regularly
scheduled value.

And, speaking from experience, this
can be a real pain to diagnose. It can also
get you into serious trouble in
environments like web portals where you
have data coming in from the outside.

To that end, I’ve devised a reasonably
devious way of handling state data…

Ok, maybe to be play to the old school
BASIC crowd I should have used “peek
and poke”. But then when I started talking
about using protection and wrapping your
dict, nobody would stop giggling long
enough for me to finish this paper.

The general idea is that your object
has only one “variable”. That variable is a
dict, and everyone accesses a copy of it
through the get method. Changes to the
state are done through the put method.

Because the state is a dict, it’s easy to
apply to a body of code. And, because you
are accessing a copy, you don’t care if
your later self decides to name one of his
local variables “table” which is used by
other methods to track what sqltable a

oo::define strawMan fooBar {nodeid
formatting} {
 variable poorlychosenexample
 foreach {
 field value
 } $::global_defaults {
 set $field $value
 }
 dict with formatting {
 … (The actual code) …
 }
}
… and later …
strawManObj fooBar e11 {
 color green
 stipple grey25
 poorlychosenexample DEADBEAF
}

strawManObj redrawFoo e10 {
 color red
}

strawManObj redrawFoo e11 [list \
 color [someColorFunction e11] \
 stipple grey25]

 oo::define strawMan redrawFoo {
 nodeid
 formatting
 } {
 foreach {
 field value
 } $::global_defaults {
 set $field $value
 }
 dict with formatting {
 … (The actual code) …
 }
 }

165

record is stored in. (Spoken from
experience…)

There’s also a handy side effect in that
you can initialize your object’s state with
a single argument to the constructor. Here

is a quick and dirty implementation:
I did throw in one creature comfort, if

the user provides a fieldname, get will
grab just that field. (Whether you check
for its existence or not first is a matter of
taste.) With no argument, you get the
whole enchilada.

Of course, once you’ve wrapped the
state of your object, there is really nothing
that says it has to be stored in a local
variable. Or in a variable at all! In many
of my systems get and put actually talk to
an SQL table.

By the by, because we are going to be
doing a lot of merging of dicts let me go

ahead and define a useful proc:
It simply takes N dicts, and applies

them in order into one big dict, ensuring
the later values for each field supersede
the previous.

In practice, you’ll see a lot of methods

in this paradigm like this:
info is the sum total of what is in the

object’s state, and what was given to us by
the function. Somewhere along the line in
either the state of be object or the
argument to the method bing, bam and
baz are defined. We calculate bar from
them. If the result doesn’t match baz we
store the new value. Silly function, yes,
but it gets the concepts across.

Containers and Nodes
Ok, so let us expand a little on these

devious little methods we have created,
get and put. As I alluded to, once you get
in the habit of accessing your state
through these (or any other) methods, a
new world opens up to you. I like to call
them “disposable objects.” In webservers,
I use them to pop on the scene, deliver
some content, and then die with an arrow
through the back.

oo::define strawman {
 method foo {infodict} {
 set info [dmerge [my get] \
 $infodict]
 dict with info {
 set bar [expr $bing * $bam]
 if { $bar != $baz } {
 my put [list $baz $bar]
 }
 }
 return $bar
 }
}

proc dmerge args {
 dict set result [lindex $args 0]
 foreach dict [lrange $args 1 end] {
 dict for {field value} $dict {
 dict set result $field $value
 }
 }
 return $result
}

oo::define strawman {
 constructor infodict {
 my put $infodict
 }
 method get {{fieldname {}} {
 variable objState
 if { $fieldname != {} } {
 return [dict get $objState \
 $fieldname]
 }
 return $objState
 }
 method put {keyvaluelist} {
 variable objState
 foreach {key value} \
 $keyvaluelist {
 dict set objState \
 $key $value
 }
 }
}

166

Basically this procedure calculates an
object id and method from a combination
of the URL and webform data passed in
by the webserver. It then summons an
object into being. It calls a method from
the object, and stores a result. At the end it
destroy the object, and deliver the result
back to the caller.

Because the object isn’t actually
storing any data, we aren’t actually losing
anything by the object’s destruction. And
the next time we call up that
record/page/whathaveyou it is free to
morph into another class entirely.

All of these classes used the same
basic fields, but which field who could
edit changed throughout the record’s
lifecycle.

You’ll notice there was an object I
didn’t properly explain called
webConObj. It is of a class I like to call a
containers. The idea is that every object
system needs some permanent objects.
Something for everyone else to call, and
who will always “be there.” If it can
handle a few other jobs as assigned, even
better!

A container’s principle job, however
is to spawn of “nodes”. In most
implementations they are also the node’s
primary way of accessing the data back
end. And they do this by providing two
methods that complement the node’s “get”
and “put”. They are “nodeget” and

“nodeput”.
nodeget and nodeput, as you see,

look and act just like the node’s own get
and put methods, but they take an addition
argument that tells the container which
node.

Now this example isn’t particularly
clever because all we do is give our
spawned nodes a copy of the data we have
stored. To be really powerful, we need to
redirect their get and put statements to
address the container directly.

Now I’ve tried a few different
techniques, but the one the works best
takes two complimentary classes. One the
container, one the node. The container
passes it’s name and a reference id to the
node. The node uses this to bootstrap

itself back into the container.
You’ll note, that I’m using a parlor

trick from TclOO called “forward”.
Forward allows you to redirect a method
call to somewhere else. Essentially, a call

oo:;class create wall {
 superclass strawbail
 method spawn {nodeid} {
 return [::brick create \
 [self]/$nodeid \
 [self] $nodeid]
 }
 method attach {object nodeid} {
 oo::objdefine $object \
 method nodeid {} \
 [list return $nodeid]
 oo::objdefine $object forward \
 get [self] nodeget $nodeid
 oo::objdefine $object forward \
 put [self] nodeget $nodeid
 oo::objdefine $object forward \
 containerObj [self]
 }
}
oo::class create ::brick {
 superclass strawman
 constructor {conobj nodeid} {
 $conobj attach [self] $nodeid
 }
}

oo::define strawbail {
 method spawn {nodeid} {
 set dat [my nodeget $nodeid]
 return [::strawman create \
 [self]/$nodeid $dat]
 }
 method nodeget {
 nodeid {fieldname {}
 } {
 variable objNodes

proc pageDeliver {url webformdata} {
 getWho $url \
 $webformdata wObject wMethod
 set obj [webConObj spawn$Object]
 set content [\
 $obj $whichMethod $webformdata]
 $obj destroy
 return $content
}

167

to the brick’s “get” method is actually a
call to the wall’s “nodeget” method, with
the argument that tells “nodeget” which
node is there.

Observe:
That same brick class will also work

happily if it’s tied to an SQL backend.
sqlwall is a modified wall. All it

changes is where nodeget and nodeput get
and store their data. In this case, instead of
a dict, they are storing data to an sql table.
As a “wall” sqlwall will still spawn off
nodes of the brick type. I have not
modified the brick class in any way. Nor
have I modified how the wall class
initializes a brick. Let’s see how it

behaves:
(Tadaa) Exactly the same! Thank you

very much ladies and gentlemen.

Other tricks to remember in
TclOO

There are some other things you need
to know in TclOO. They are random,

Tales from the front:
I found disposable objects a very useful state

of affairs for a workorder system at the Franklin
Institute. A record started off as a “report”. Once
a report had been reviewed, it became an
“assignment”. The completed an assignment
became a “completed assignment.” A completed
assignment could order could be filed away into
the archives as “closes”, or re-punted as an
“assignment” if some issue with the workmanship
needed addressing.

Different state had different ways of being
displayed. They also had different work rules
about who was allowed to edit what.

In the end it was easiest to represent each
state as a class. Every pageview the record would
save, and the next pageview, which “class” the
record would be next was recalculated.

% sqlwall create wallContainer
% wallContainer nodeput 1 {somevalue
10}
% set brick1 [wallContainer spawn 1]
% $brick1 put {someothervalue 20}
% $brick1 get somevalue
> 10
% wallContainer nodeget 1
> somevalue 10 someothervalue 20

sqlite3 db :memory:
db eval {
create table store (
 nodeid integer,
 field string,
 value string,
 primary key(nodeid,field)
)
}
oo:;class create sqlwall {
 superclass wall
 method nodeget {nodeid {fieldname
{}} {
 if { $fieldname != {} } {
 return [db one {
 select value from store where
 nodeid=$nodeid and field=$fieldname
 }]
 }
 return [db eval {
 select field,value from store where
 nodeid=$nodeid
 }]
 }
 method nodeput {nodeid
keyvaluelist} {
 variable objNodes
 foreach {key value}
$keyvaluelist {
 db eval {
 insert or replace into store
 (nodeid,field,value) VALUES
 ($nodeid,$key,$value)
 }
 }
 }
}

% wall create wallContainer
% wallContainer nodeput 1 {somevalue
10}
% set brick1 [wallContainer spawn 1]
% $brick1 put {someothervalue 20}
% $brick1 get somevalue
> 10
% wallContainer nodeget 1
> somevalue 10 someothervalue 20

168

capricious, and really would to have had
to have been there to understand they
whys and hows.

Little Letter First
By convention, TclOO treats all

methods that start with a small letter as a
public method. It’s actually a very nice
convention. It will get you into trouble if
you copy and paste Itcl code. (Not that

I’m speaking at ALL from experience...)

That’s my method!
Another thing that TclOO does

differently is insist you address an

object’s own methods as “my”.
There are ways around it, but I agree

with Donal’s decision on this one.

Imagine, for example, the case...
The way Itcl handles it is to exhaust

it’s local repertoire of methods before
going out to the world. Having built my
own object systems from scratch (and
who here in the crowd hasn’t?) I know
that this process is somewhat expensive.
Especially if you are doing for every line
of method code.

By using a “my” operator, TclOO
manages to avoid all this overhead and as
an added bonus run all of your method
code more or less bare inside the
interpreter. A call to a global command
costs the same a call to a local method.

My Little Core Hacks

Constant Strings
This is more a dict hack than a TclOO

hack, but because I’ve gone on at great
length about how Dicts can save the
world, it’s not a bad place for it.

I have a little trick I use for large
simulations to conserve memory. It’s in C,
and if I’m not careful will probably be
TIPed by the end of the conference.

I noticed that I was storing the same
strings over and over again as field names.
And thought I, “how many copies of those
do I actually need?”

So, with a little bit of playing, I came
up with a quick new command
“constant_string” constant_string will
take in a string. It searches through a list
of strings objects it already knows. If it
finds it, it increments that reference count
of the matching tcl object, and returns the
pointer to that tcl object as the return for
the function. If it does not find that string,
it makes a new tcl object, and adds it to
the list with a refcount of 1.

One simulation of mine, with about
35,000 nodes went from consuming 95mb
of ram to a little over 19mb in one go.
While I do use the same technique on the

oo::define brick method exit {
 return {The cake is a lie!}
}
oo::define brick method learnToExit {
 return [exit]
}

brick1 exit
> The cake is a lie!
brick1 learnToExit
(Program ends)

oo::define brick method fly {
 return thud
}
oo::define brick method learnToFly {
 return [fly]
}

brick1 Fly
> thud
brick1 learnToFly
> No such command “Fly”

oo::define brick method Fly {
 return thud
}
oo::define brick method learnToFly {
 return [my Fly]
}
brick1 Fly
> No such method “Fly”
brick1 learnToFly
> thud

169

C level, it’s also handy on the tcl level.

And it’s usage is as simple as:
What happens behind the scenes is

that the value of $field is replaced by a
pointer to an existing Tcl_Obj. It’s still
there, but after the first copy, it’s no
longer taking up any space. Have 30
records with the same field, and the 30
copies will be pointing to the same
Tcl_Obj data structure.

Conclusion

Well, I hope you found something
useful in all of this. As for me, I’m
realizing there is a need for a library of
these design pattern in TclLib. But in the
meantime, all of the code, and examples
as to how they are used are available on
my website:

http://www.etoyoc.com/tao

dict set inmemdb \
 [constant_string $field] $value

170

int constantCount;
Tcl_Obj *ConstantList;

/* Return a constant version of a string */
Tcl_Obj *constant_stringObj(Tcl_Interp *interp,const char *newName) {
 int nStrings,i,result;
 Tcl_Obj **stringObj,*newObj;
 char *zName;
 Tcl_ListObjGetElements(interp, ConstantList, &nStrings, &stringObj);
 /* Search through our list, drop off when we get past
 what string is alphbetical
 */
 for(i=0;i<nStrings;i++) {
 zName=Tcl_GetStringFromObj(stringObj[i],0);
 if(strcmp(newName,zName)==0) {
 Tcl_IncrRefCount(stringObj[i]);
 return stringObj[i];
 }
 if(strcmp(newName,zName) > 0) break;
 }
 ConstantList->refCount=0;
 newObj=Tcl_NewStringObj(newName,-1);
 Tcl_IncrRefCount(newObj);
 /* Give me an extra one... just in case */
 Tcl_IncrRefCount(newObj);

 result=Tcl_ListObjReplace(interp,ConstantList,i,0,1,&newObj);
 ConstantList->refCount=100;
 if (result != TCL_OK) return 0;
 return newObj;
}

static int constantMapCmd(
 void *pArg,
 Tcl_Interp *interp,
 int objc,
 Tcl_Obj *CONST objv[]
){
 char *newName;
 Tcl_Obj *result;

 if(objc != 2) {
 Tcl_WrongNumArgs(interp, 1, objv, "string");
 }
 newName=Tcl_GetStringFromObj(objv[1],0);
 result=constant_stringObj(interp,newName);
 if (!result)
 return TCL_ERROR;
 Tcl_SetObjResult(interp,result);
 return TCL_OK;
}

Program Listing: C implementation of a constant_string command

171

172

