
TclOO
Past, Present, Future…Past,

Donal K. Fellows

University of Manchester / Tcl Core Team

Or “What I’ve Been Doing for the Past

Few Years Instead of Watching Bad TV”…

TcLOO: Past

Where it came from, how it was
developed

What is TclOO?

• New Standard Object System
• Part of Tcl 8.6

– Available as extension for Tcl 8.5
oo::class create Toaster {oo::class create Toaster {

variable useCount

constructor {} { set useCount 0 }

method makeToast {{slices 1}} {

incr useCount

for {set i 0} {$i<$slices} {incr i} {

puts "made slice $i from use $useCount"

}

}

}

set t [Toaster new]

$t makeToast; # � made slice 1 from use 1

10/02/09 3Tcl Conference 2009, Portland Oregon

Why?

• Existing Object Systems had Issues
– Some were too slow
– Some were messy internally
– Some were entangled with class libraries
– All were poorly integrated with Tcl– All were poorly integrated with Tcl

• Except Tk, which is plain inflexible
• TclOOExists to be a SmallObject System

– But deeply integrated with Tcl
– Allow other OO systems to be built
on top

10/02/09 4Tcl Conference 2009, Portland Oregon

Where Did TclOOCome
From?

• Many Principal Lineages
– Tk

• General style of method calling
– [incr Tcl]– [incr Tcl]

• Way of declaring classes, much syntax
– XOTcl

• Semantics of class system
– Snit

• Support delegation and scriptability

10/02/09 5Tcl Conference 2009, Portland Oregon

Who and When?
• First Glimmerings at Tcl 2003

– Will Duquette and myself
• Also lead to 8.5’s ensembles

• Nearly 2 Years Later (2005)
– Steve Landers, Will and myself wrote spec

• First prototype by me in 2006• First prototype by me in 2006
– Started getting much useful TCT input

• Full prototype in 2007
• Committed to Tcl in 2008

– Few small things added since with usage
experience

• Overall Gestation was 3-5 Years!

10/02/09 6Tcl Conference 2009, Portland Oregon

Development

• Scripted Prototype
– Very difficult, so scrapped in favour of…

• CVS Feature Branch of Tcl
– Written in C– Written in C
– Planned for deep integration
– No unrelated changes

10/02/09 7Tcl Conference 2009, Portland Oregon

Key Milestones

1. Initial Specification
2. Working Method Invocation
3. Definition Command
4. Starting the Test Suite4. Starting the Test Suite
5. Generic Method C API
6. Converting to a Package
7. Doing a Release

10/02/09 8Tcl Conference 2009, Portland Oregon

Lessons Learned…

• Make a Plan
– Define what success is!

• Study the Competition
– Steal their good ideas!– Steal their good ideas!

• Be Clean in Development
– No releases until people will be able to run it
– Don’t mix in irrelevant features

• Testing is Vital

10/02/09 9Tcl Conference 2009, Portland Oregon

TclOO: Present

Features, Use and Performance

What does TclOO Offer?

• Powerful Object System

• Small Feature Set

• Stability

• Deep Integration with Tcl• Deep Integration with Tcl

• Can be Driven from C API

• Fast Core

10/02/09 11Tcl Conference 2009, Portland Oregon

The Example Again

oo::class create Toaster {
variable useCount

constructor {} {
set useCount 0

}

method makeToast {{slices 1}} {
incr useCountincr useCount
for {set i 0} {$i < $slices} {incr i} {

puts "made slice $i from use $useCount”
}

}

}

set toastie [Toaster new]

$toastie makeToast; # � made slice 1 from use 1

10/02/09 12Tcl Conference 2009, Portland Oregon

Making our Toaster Fly

with a Mixin
oo::class create FlyingObject {

method takeOff! {} { … }

method land {} { … }

method getAltitude {} { … }

}}

oo::objdefine $toastie mixin FlyingObject

$toastie takeOff!

$toastie makeToast

10/02/09 13Tcl Conference 2009, Portland Oregon

TclOO Power

• Same Basic Semantic Model as XOTcl

• Single Rooted Multiple Inheritance

– Subclassable Class Objects in Object System

• Mixins (“ad hoc” classes) and Filters• Mixins (“ad hoc” classes) and Filters

– Enables things like Prototypes and Aspects

• Two Types of Methods

– Procedure-like

– Forwarded/Delegated

10/02/09 14Tcl Conference 2009, Portland Oregon

TclOO Features

• As Few as Possible

– Scriptable and Composable

• Every Object has its own Namespace

– Holds all variablesHolds all variables

• Objects can be Renamed

• Objects can be Reclassed

• Definitions by Scripts

– Somewhat similar to [incr Tcl] and Snit definitions

• Introspection Integrated into [info]

10/02/09 15Tcl Conference 2009, Portland Oregon

Scripting: Class Variables

proc ::oo::Helpers::classvar {name args} {

Get reference to class’s namespace

setsetsetset nsnsnsns [[[[infoinfoinfoinfo objectobjectobjectobject namespacenamespacenamespacenamespace [[[[upleveluplevelupleveluplevel 1 {1 {1 {1 {selfselfselfself classclassclassclass}]]}]]}]]}]]

Double up the list of variable names# Double up the list of variable names

set vs [list $name $name]

foreach v $args {lappend vs $v $v}

Link the caller’s locals to the class’s variables

tailcall namespace upvar $ns {*}$vs

}

10/02/09 Tcl Conference 2009, Portland Oregon 16

Scripting: Class Methods

proc ::oo::define::classmethod {name {args ""} {body ""}} {

Create the method on the class if the caller gave

arguments and body

if {[llength [info level 0]] == 4} {

uplevel 1 [list self method $name $args $body]

}}

Get the name of the class being defined

set cls [lindex [info level -1] 1]

Make connection to private class “my” command by

forwarding

tailcall forward $name [info object namespace $cls]::my $name

}

10/02/09 Tcl Conference 2009, Portland Oregon 17

Stability and Testing

• Test Suite Covers Normal and Error Cases

– Includes checks for various clean teardowns

– Includes checks for leaking memory

• Goal: As Stable and Robust as Tcl• Goal: As Stable and Robust as Tcl

– Should be no unchecked failures ever

10/02/09 18Tcl Conference 2009, Portland Oregon

Production Use of TclOO

• Powers TDBC

– Also show that TclOO supports UML Composition

• Supports itcl-ng

– This is [incr Tcl] in Tcl as contrib. package– This is [incr Tcl] in Tcl as contrib. package

– Uses TclOO to provide basic OO framework

• Commercial Uses

– Ansaldo STS use it in their railway maintenance
support product

• Reported at EuroTcl 2009

10/02/09 19Tcl Conference 2009, Portland Oregon

Tricks in TDBC: Lifetime

• TDBC uses Cunning Lifetime
Management Techniques
– UML Class Composition

• Based on Ownership
– Each Statement owned by

one Connection

Connection

one Connection

– Each ResultSet owned by one
Statement

• Implemented by Placing
Owned into Owner’s
Namespace
– Automatic deletion when

owner goes away

Statement Statement

ResultSet ResultSet ResultSet

Statement

10/02/09 Tcl Conference 2009, Portland Oregon 20

Tcl Integration

• Available as Package for 8.5

– Thanks to ActiveState for build support

• Part of Tcl 8.6

– Fully supports NRE– Fully supports NRE

• Doesn’t blow C stack

• Can [yield] inside method calls and constructors

• Connection to Tcl Procedure Engine

– Other OO extensions that use TclOO to implement

methods are no longer tightly coupled to Tcl

10/02/09 21Tcl Conference 2009, Portland Oregon

The TclOO C API

• TclOO uses its own C API

– Generic Method Definition Interface

• All standard methods built on top of that

– Construction API– Construction API

• No destruction API; use existing facilities

– Introspection API

• Information about objects

• Information about current method

• The C API is a Vital Part of TclOO

10/02/09 22Tcl Conference 2009, Portland Oregon

TclOO Performance

• TclOO is Fast

– Fastest Object System for Tcl

• Massive Amount of Caching

– Especially of method interpretations– Especially of method interpretations
• In object, class and Tcl_Obj internal representation

– Caches flushed conservatively

• Critical Paths Analysed to Reduce Hot Allocs

– Object creation

– Method call

10/02/09 23Tcl Conference 2009, Portland Oregon

Performance: Basic Call

1000000

1200000

1400000

1600000

1800000

C
a

ll
s

p
e

r
se

co
n

d Procedure

TclOO

0

200000

400000

600000

800000

1000000

Tcl 8.5.2 Tcl 8.6b1.1

C
a

ll
s

p
e

r
se

co
n

d

TclOO

XOTcl

[incr Tcl]

Snit

Stooop

10/02/09 24Tcl Conference 2009, Portland Oregon

Performance: Stateful Call

800000

1000000

1200000

C
a

ll
s

p
e

r
se

co
n

d Procedure

TclOO

0

200000

400000

600000

Tcl 8.5.2 Tcl 8.6b1.1

C
a

ll
s

p
e

r
se

co
n

d

TclOO

XOTcl

[incr Tcl]

Snit

Stooop

10/02/09 25Tcl Conference 2009, Portland Oregon

Performance: Create/Delete

120000

140000

160000

180000

200000

C
a

ll
s

p
e

r
se

co
n

d

TclOO

XOTcl

0

20000

40000

60000

80000

100000

Tcl 8.5.2 Tcl8.6b1.1

C
a

ll
s

p
e

r
se

co
n

d

XOTcl

[incr Tcl]

Snit

Stooop

10/02/09 26Tcl Conference 2009, Portland Oregon

Performance:

Make/Call 10/Del.

40000

50000

60000

70000

C
a

ll
s

p
e

r
se

co
n

d

TclOO

XOTcl

0

10000

20000

30000

40000

Tcl 8.5.2 Tcl 8.6b1.1

C
a

ll
s

p
e

r
se

co
n

d

XOTcl

[incr Tcl]

Snit

Stooop

10/02/09 27Tcl Conference 2009, Portland Oregon

Performance:

Superclass Call

400000

500000

600000

700000

C
a

ll
s

p
e

r
se

co
n

d

TclOO

0

100000

200000

300000

400000

Tcl 8.5.2 Tcl 8.6b1.1

C
a

ll
s

p
e

r
se

co
n

d

TclOO

XOTcl

[incr Tcl]

Stooop

10/02/09 28Tcl Conference 2009, Portland Oregon

TclOO: Future

Possible future directions

New TclOO Features?

• Garbage Collection
– Only of unrenamed objects from “new” method
– Problematic because it doesn’t fit Tcl’s semantics

• Unlikely to break scripts that weren’t leaking

• Submethods• Submethods
– More like Tk/Snit
– Very nice to use, but some tricky issues

• How does inheritance work?

– Portable scripts will make method names be
single words

10/02/09 30Tcl Conference 2009, Portland Oregon

Jazzing Up TclOO’s Internals

• Slots
– Better way to manage configuration

• Likely to cause issues with anything named
starting with a “-” character

– But slots are objects– But slots are objects
– Should methods and variables be objects?

• Needs investigation

• Poking in the Guts
– e.g., ways to change how methods are looked

up
• Currently some hacks for itcl-ng; want better…

10/02/09 31Tcl Conference 2009, Portland Oregon

Building a Class Library

• Already prototyped on Wiki
– Serialization
– Channel engine
– Megawidgets– Megawidgets

• How to distribute between packages?
– Which in Tcl?
– Which in Tk?
– Which in Tcllib?

10/02/09 32Tcl Conference 2009, Portland Oregon

Object Serialization
• Write Objects to a String and

Read Back
– Can also go over sockets or through

files or …

• Experimental Package on Wiki

Interp.

#1

– http://wiki.tcl.tk/23444
– Does not serialize classes
– Does not deal with object name

clashes
– Needs cooperation from objects to

explore object graph

So
ck

e
t

Interp.

#2

10/02/09 33Tcl Conference 2009, Portland Oregon

Channel Engine Classes

• Classes to Make Writing Channels Easy
– Based on Andreas Kupries’s channel API
– Both full channels and transformations

• Prototype Code on Wiki• Prototype Code on Wiki
– http://wiki.tcl.tk/21723
– Introspection to find what features to support

10/02/09 34Tcl Conference 2009, Portland Oregon

Megawidgets

• Make Tk Widgets with TclOO Objects
– Work in “the same” way
– Wrap actual widgets

• Prototype Code on Wiki• Prototype Code on Wiki
– http://wiki.tcl.tk/21103

• Already Driven Two Features Added
– The ‘variable’ declaration
– Improved method forwarding to object-local

commands

10/02/09 35Tcl Conference 2009, Portland Oregon

Where Next?

• TclOO Intended to be Foundation
– Fast, light, small, stable, and above all Tcl-ish
– It deals with the really complicated bits so you

don’t have todon’t have to

• Features to Add Should be Community-
Driven
– If you want it, let us know!

10/02/09 36Tcl Conference 2009, Portland Oregon

