
TclOO: Past, Present and Future
Donal Fellows

University of Manchester / Tcl Core Team
donal.k.fellows@manchester.ac.uk

Abstract
This paper looks at the state of Tcl’s new

object system, TclOO, looking at the forces that
lead to its development and the development
process itself. The paper then focuses on the
current status of TclOO, especially its interest-
ing features that make it well-suited to being a
foundational Tcl object system, followed by a
look at its actual performance and some of the
uses to which it has already been put. Finally,
the paper looks ahead to some of the areas
where work may well be focused in the future.

1. TclOO: Past

Genesis (with Phil Collins)

One of the longest-standing complaints about Tcl
has been its lack of an object system; this has not
always been an entirely fair criticism, as Tcl has in
fact had rather too many of them! The most well
known ones are Tk (in a sense), [incr Tcl], XOTcl
and Snit. But each of them has had a number of
restrictions that has made it not quite suitable for
use as a general Tcl object system, and to people
not immersed in the details of Tcl this has meant
that Tcl has appeared to completely fail to support
those.

The problems with and good properties of the exist-
ing object systems listed above are these:

Tk: Tk is focussed entirely on supporting
graphical widgets, and so has never ac-
tually been usable as a general OO sys-
tem. It has however established a key
baseline for how we expect object in-
stances to work at the script level, par-
ticularly in the use of subcommands as
a way of interacting with the instance.

[incr Tcl]: Itcl (as it is more commonly known) is
the object system that has come closest

to being universally deployed in Tcl
installations to date, and the way in
which you declare classes within it is
exceptionally easy to use. On the other
hand, it shows its heritage in the C++
model of the early 1990s, being rela-
tively inflexible and unable to support
many advanced features of object sys-
tems.

XOTcl: In many ways, XOTcl represents the
polar opposite of itcl. It has a great set
of basic semantic features and is enor-
mously flexible, both features that fit
the spirit of the Tcl language itself very
well, but it is awkward syntactically
and has a strong insistence on adding a
lot of methods that are not needed
everywhere, making the interface ex-
posed by objects cluttered.

Snit: Snit is the most interesting of the
purely scripted object systems (the
others all have substantial C compo-
nents). Its focus is on the use of dele-
gation to achieve its goals rather than
inheritance, and this makes it very
suitable for many of the tasks involved
in building megawidgets. However, it
pays a substantial performance penalty
for being written in Tcl.

It is these essential problems, each of which is
totally inherent to the way that each object system
works, that led to the effort to develop a new object
system that would be deeply integrated and yet of a
more limited scope. The aim was (and is!) to enable
people to build whatever they want on top of it.

The Plotters Revealed

Tcl 8.6 is the first version of Tcl to ever include a
standardized core object system, which also goes
by the name of “TclOO” and is also available as an
extension for Tcl 8.5. It was written to try to take

141

the very best of these other object systems and to
provide a flexible and dynamic basis for the cre-
ativity of the Tcl community.

TclOO really started life at a Tcl Conference. Spe-
cifically, it arose originally out of a conversation
between Will Duquette and myself at the 2003 con-
ference in Ann Arbor, where we talked about Snit
(which Will had been presenting) and what it
would take to make it faster, and where I had been
presenting how to assemble of some of the features
of Tcl 8.4 to make a simple object system. That
conversation led to the development of ensembles
for Tcl 8.5, a feature that is proving to be quite use-
ful in itself through enabling things like simple
compilation of parts of commands like info and
string without the previous complexity of the
command compilers.

Later in the development of 8.5, we (together with
Steve Landers) revisited the ideas from that con-
versation and asked what was working about the
new features of 8.5, and what was not. We agreed
that while ensembles were great, they didn’t do
nearly as much as we desired. In particular, we
instead wanted a “real” object system, with things
like inheritance and separated public and private
interfaces, as Will was hitting inherent limits in the
design of Snit when applied to large systems. So
we started by asking what was wrong with the ex-
isting systems, and we concluded that Tk was ut-
terly inflexible, itcl deeply dated (though nice to
use), XOTcl polluted though semantically interest-
ing, and Snit far too slow and limited.

Given that, we took the one with the strongest theo-
retical basis (XOTcl) and looked at what were the
smallest changes that we could make to it to make
it suitable for producing clean interfaces (we’d
identified that cleanliness in that area would be a
required feature of any real core OO system). Alas,
once you start picking at XOTcl’s syntax, many of
its features don’t work well; it depends very
strongly on how it processes its init methods as a
way of setting up objects. In particular, we had a
strong desire to allow authors of classes to be able
to handle arbitrary arguments, just like normal Tcl
procedures, rather than forcing arguments that con-
sisted of hyphen-prefixed method names to be in-
terpreted as calls to that method. After all, that is a
feature that can be added by a particular class if
desired. When we combined that principle with the
general cleanup (and moving the configuration of
classes and objects into another command) we
ended up with essentially the interface we have
today.

To clear up a misconception that sometimes raises
its head, it has never ever been our intention to

force anyone to use TclOO, just as we do not force
anyone to use any other Tcl feature (even doing
without procedures is possible, if inclined towards
making life difficult for yourself). In particular, we
do not force all values to be objects, unlike a num-
ber of other languages. Tcl retains its standard
“everything is a string” semantics, and objects are
really just another way to create commands.

In the Developing World

In terms of development, TclOO had a difficult
gestation. In particular, it took an exceptionally
long time to get to first base, as for a long time I
struggled with trying to build a prototype in Tcl so
that I could test the script-level API. The real
breakthrough came when I stopped trying to script
a prototype and instead built a system that would
do method dispatch (initially, as just a single-parent
inheritance tree) and seeded an initial population of
classes (i.e., the class of objects and the class of
classes). With that basic core done, even if totally
unoptimized at that point, it became possible to see
the way ahead and to start making effective use of
collaboration tools like version control systems.

The development of TclOO was done initially as a
branch off a particular point in the development of
Tcl 8.5, and I took a general decision that I would
not track any changes originating outside the
branch while doing the development. This meant
that it was stuck with whatever bugs were present
in the exact version of Tcl I happened to start from,
a matter of some frustration to other Tclers who
wished to review the code, but also meant that the
only changes on the entire branch were ones that
related to the things being developed. This “pure
feature development” branch technique makes best
use of the way that CVS manages branches, espe-
cially as I took care to ensure that I had set a tag on
the point where the branch originated from. Only
once I had versions that were substantively feature-
complete did I work on integration with the rest of
Tcl at all, a task made far easier by the fact that the
large majority of the code changes were in new
source files.

In retrospect, the key visible milestones were:

1. Implementation of the core class structure.
2. Working method invocation.
3. Creation of the oo::define command.
4. Beginning a test suite.
5. Prototype build system.
6. Restructuring methods so they are done

with a generic management structure in-
stead of just special cases.

7. Addition of introspection, enabling a full
test suite.

Donal Fellows / Tcl Core Team

142

8. Release to other people as a package.
9. Integration into Tcl.

Most of these were obviously milestones at the
time. For example, once you can do a rapid cycle of
build and test, you can iron out bugs at a greatly
increased rate. Note also that introspection came
relatively late, not because it was unimportant, but
because it was easy; it was only forced in the end
by the fact that it was needed for increasing the test
coverage from checking for errors to detailed in-
spection of the consequences of reconfiguration.

There were a few invisible milestones as well, pri-
marily in the development of the method call chain
cache. Key points there were when it was first
introduced (very early, once it was clear that gener-
ating method call chains would be expensive), the
point where the cache started being maintained at
least partially in the method name Tcl_Obj internal
representations, and the point where the cache was
made not specific to a particular object when that
object was stereotypical of its class (the normal
case by far).

Citizens� Advice Cupboard

In terms of advice for others taking on projects of a
similar scale, here are a few tips:

1. Make a plan first, so that you know when
to declare success. You can change the
plan, but without one it is impossible to
progress.

2. Study the literature and the competition. It
is much easier to reuse other people’s
good ideas than it is to have your own!

3. Until you have the heart of things done,
you cannot make any good use of the tools
and principles of open source develop-
ment; people only help when they can do
so incrementally.

4. Don’t mix bug fixes and feature develop-
ment up. Even with the help of systems
like GIT, it’s still better to have a clean
description of what your feature is so that
you can present it to others as a neat pack-
age. (Be prepared to do special demonstra-
tion merges from time to time, but don’t
waste effort on maintaining them.)

5. You won’t get everything right until you
have full in-service testing. It is just im-
possible to anticipate everything that the
users of the code will want to do (well, as-
suming you’re successful that is) so do not
put effort in early on getting it all right. It
is far better to plan to have a beta period to
give the adventurous a chance to work out
where your bloopers are.

6. Don’t do releases until you are passing all
your tests on at least one system. Be pre-
pared for problems when other people are
building with any architectural configura-
tion that you have not personally checked,
and prepare to spend time that you don’t
want to spend on helping people.

2. TclOO: Present
TclOO is designed to be fast, small, stable, script-
able, and deeply integrated with Tcl. The hope is
that by having one piece of code dig in this deep,
others will be able to reap the performance benefits
without going to all the trouble.

Faster, Pussycat! Kill! Kill!

It is well known that it is a bad idea to optimize too
early, so much so that people are frequently en-
joined from optimizing at all until they are experts.
So why did we put so much effort into optimizing
TclOO? Quite simply, it is that we know for certain
that different languages will be compared for the
performance of their object systems, no matter how
little this applies to whether the language or the
object system is a good choice for the problem. I
therefore made boosting the performance a key
priority.

The speed of TclOO comes from the fact that it has
been carefully optimized for performance. In par-
ticular, the following critical paths have had much
attention: the (repeated) method call, especially
when the object is a prototypical member of its
class, the creation of a new non-class object, and
the destruction of a non-class object. Because it is
anticipated that classes will have lifespans that are
substantially longer than that of instances, much
less effort has been put into optimizing their cre-
ation and destruction.

For method calls, the heart of the performance
comes from two things. Firstly, the process of con-
verting the object and method name into a sequence
of method implementations to call (a “call chain”)
is slow, so it is vital that it is avoided wherever it is
safe to do so. This is done through extensive cach-
ing, within the internal representation of the
method name, within the object, and within the
class (so that when objects are plain instances of a
class — by far the most common case — they can
share caches for a substantial reduction in overall
performance cost). The only disadvantage of doing
all this caching is that the determination of when a
cache has to be invalidated is important to get right,
possibly even requiring erring on the side of cau-
tion, and the cost when the cache is invalidated is

Donal Fellows / Tcl Core Team

143

rather high. In addition, the cost of checking
whether the cache is invalidated must be low.
These are achieved by the use of epoch counters
that are updated whenever the definitions of objects
or classes are modified; when the current epoch
does not match the one where a cached call chain
was created, the old call chain is discarded and a
new one is created. (In fact, there are multiple
epoch counters. This means that updates of the
definition of a single object or a class with no in-
stances or subclasses do not cause the rebuild of the
whole world, these being important common
cases.)

The other source of method call performance
comes from careful tracing of just where the costs
are. In particular, the two most costly operations
that are likely to happen in most high-performance
code are memory allocation and hash-table loo-
kups. It is therefore clear that to boost performance,
it is important that these expensive operations are
only used where they are strictly necessary. Once I
came to the point where actual high-performance
implementations were required, I also avoided
using techniques like Tcl_Preserve to manage
lifetime of objects that have non-trivial cleanup,
because a custom reference count system requires
less space and fewer lookups internally.

For an example of the sort of optimizations that
have been applied, it is useful to consider the cre-
ation of an object. This requires the creation of a
namespace and two commands, one inside this new
namespace and the other with either the name of
the namespace or a value supplied by the caller. By
being careful here, it was possible to avoid a mod-
erately complex series of lookups in the creation of
the internal object command (i.e., my) since it is
always created in a new namespace; there is never
any need to check if there is an existing command
in the way. This means that it is safe to directly
manipulate the namespace structure itself when
creating the command, an option that is strongly
not recommended for code outside the Tcl core!
Similarly, the name of the current object is also
only generated lazily and is shared as much as pos-
sible, only being discarded when the object is re-
named.

Tiny Tim Strikes Back!

Almost all of the development of TclOO was a
one-man band, and yet it has been possible to pro-
duce a very high quality object system in a short
time this way. The key to this achievement is that
the focus was always on doing as little as possible,
keeping features out if they didn’t need to be in.

Most object systems come with a substantial class
library (or equivalent). After all, this is a very use-
ful thing for most people. But TclOO is not in-
tended to be the total solution to everyone’s needs,
and in any case, there are many wonderful existing
libraries. Redoing them all would have taken a
large amount of work and would have detracted
from the primary mission: getting the basic object
system done. So such effort as I had, needed to be
spent wisely.

Where did it go?

The method dispatch engine, as previously men-
tioned, is the single most important part of the
code, as it is highly exposed to users and the key to
how everything works. It received much attention
as you might expect.

Another area that took a lot of work to get right
was the initialization and finalization of both ob-
jects and the entire system. Of particular difficulty
was ensuring that everything took itself apart neatly
when the world was ripped out from under its feet
in strange ways, particularly by the whole inter-
preter being deleted or through deletion of the glo-
bal namespace.

The third area that consumed a lot of effort was the
implementation of methods themselves. This is
because they are hooked very deeply into the code
that manages procedures, sufficiently so that they in
fact use a new private API created specially for
them called TclObjInterpProcCore. (This API is
why the TclOO package for Tcl 8.5 cannot work in
older versions of Tcl.) In Tcl 8.6, things are differ-
ent again, because methods fully integrate into the
non-recursive calling engine so that new commands
like tailcall and yield will work smoothly in meth-
ods.

The final area that consumed masses of effort was
the build system for the stand-alone TclOO pack-
age. While things were compounded by the fact
that TclOO was exporting a stub table of its own so
that code built against it could continue to work
when used with Tcl 8.6, it was plain issues of
building that caused difficulties time and time
again, even with the help of TEA for the basics. If
the code had not required the use of Tcl’s internal
headers, it would have been far simpler. (By com-
parison, no problems of a similar nature were ever
encountered when working on the code as inte-
grated into Tcl.)

How to Bolt Stable Doors Earlier

A critical goal of TclOO has been stability of im-
plementation, so that it is as solid a platform as
possible for others to build on. This is founded

Donal Fellows / Tcl Core Team

144

upon two aspects: freedom from crashes and free-
dom from memory leaks.

In respect of the first aspect, crash-free code is
something that any Tcl programmer expects. Even
if they do something unwise, a good Tcl command
will detect it and respond with a sensible error mes-
sage rather than falling over in a nasty mess.
Checking that this is actually true depends on the
use of a test suite that exercises as many failure
modes as possible (too few arguments, too many
arguments, wrongly formatted arguments, clashes
between commands, etc.) and knowing what to
check for requires a tricky mind. My thanks to Don
Porter for his key insights into the myriad ways in
which finalization could occur.

The only aspect of Tcl where nasty failure can hap-
pen is with memory allocation, because it is excep-
tionally difficult to check for in a portable fashion
except at the point when you can no longer do any-
thing nice about it. It is therefore essential that
memory is not leaked; when an object is deleted, all
memory associated with it must be cleaned up, and
even when things are dynamically altered, nothing
must ever be left in an undetermined state. Though
the TclOO test suite does check for leaks from the
low-level machinery (the method call engine, the
caches) it does not, and cannot, ensure that pro-
grams are leak-free. You can still get into a lot of
trouble with programs that create lots of objects
and do not delete them again.

Thus, it is vitally important that introspection start-
ing at the oo::object class be able to find all cur-
rently extant objects, i.e., objects cannot get lost.
Given that, deleting a class results in the deletion of
all instances of that class and all subclasses too,
making tidying up much simpler. One easy way to
do this when an object is simply tied to the lifetime
of a particular scope (procedure, lambda expres-
sion) is to use the try command’s finally clause to
ensure that the objects created are also deleted. An
alternative is to use a variable unset trace on a local
variable of the scope. Another technique that works
well for coroutines is to set a deletion trace on the
coroutine command, as that is based on information
easily looked up with info coroutine.

In addition, TclOO also supports tying the lifetime
of one object to another that “owns” it, a concept
that is called “composition aggregation” in UML
(see Figure 1 for an illustration of this as applied to
TDBC). You do this by creating the owned object
in the internal namespace of the owner (you may
also rename the object into the namespace to
achieve this). Once that is done, the contained ob-
ject will be automatically destroyed when the con-
tainer goes away; no explicit destructor is required.

The only thing to be careful of is that when the
contained object is deleted, it is impossible to call
anything on the container. TDBC uses this feature
(see Figure 1) to manage the lifetimes of statements
and result sets within database connections.

A Scripted Entrance

One of the key features of TclOO which makes it a
much more suitable feature for a general Tcl object
system is that it is scriptable. In particular, it is pos-
sible to introduce new features of the base system
in pure Tcl code; use of the C API is not necessary
at all.

Not only can you reconfigure core classes like
oo::object and oo::class (though perhaps this is
not all that wise; library code might not expect it)
through the virtues of dynamically modifiable
classes, but you can also create your own sub-
classes of them and use those to build up your
infrastructure. In particular, making a subclass of
oo::class (a feature that came from XOTcl) allows
you much greater control over how construction of
objects happens, which makes writing classes that
work in complex ways much easier. For example,
when creating megawidgets you can use an un-
known method handler to intercept calls that follow
the classic Tk pattern (“className .foobar …”)
and redirect that to creating an instance of the class.

oo::class create MegaBase {
 superclass oo::class
 method unknown {m args} {
 # Looks like a widget name?
 if {[string match ".*" $m]} {
 # Hand off to creation method
 tailcall my create $m {*}$args
 }

 # Default handling
 next $m {*}$args
 }
}
MegaBase create MegaExample {
 method create {w args} {

0..*

0..*

TDBC: Connection

TDBC: Statement

TDBC: ResultSet

Figure 1. UML class diagram showing object
ownership in TDBC

Donal Fellows / Tcl Core Team

145

 # Code omitted for clarity ...
 }
}
MegaExample .foobar -text "example"

But that is not the only way that you can extend the
behaviour of TclOO. For example, you can add a
command that lets a method defined by a class refer
to variables declared on the class and not the in-
stances, so that the variable is shared between all
instances of the class. Adding of this command to
the visibility of all methods is done by just creating
it in the special namespace ::oo::Helpers, as that is
added to the path of all object namespaces (by de-
fault, it contains the next and self commands).
Thus, you can declare the command like this:

proc ::oo::Helpers::classvar \
 {name args} {
 # Get reference to class’s namespace
 set ns [info object namespace \
 [uplevel 1 {self class}]]

 # Double up the list of varnames
 set vs [list $name $name]
 foreach v $args {lappend vs $v $v}

 # Link the caller’s locals to the
 # class’s variables
 tailcall namespace upvar $ns {*}$vs
}

One thing to note about that code (in the line that is
marked with bold text) is that it makes use of a
combination of two of TclOO’s introspection fea-
tures to discover where the class keeps its vari-
ables. The self class command reports what class
declared the current method (normally obvious, but
not in this case) and the info object namespace
command reports what the private namespace of
any object is, allowing code to peek behind the
curtain of the official interface any object (includ-
ing classes). Since all variables of objects are kept
in a private per-object namespace, it is a simple
step to go from obtaining the namespace name to
manipulating the variables.

Even more sophisticated elaborations of the TclOO
core functionality are possible. The oo::define
command works by evaluating its definition argu-
ment in another namespace1, so adding another
command to that namespace will enhance the
oo::define command directly. Here, I demonstrate
how to make a command to create class methods:

proc ::oo::define::classmethod \
 {name {args ""} {body ""}} {

1 After all, why would I write a complex code parser
when I could just reuse the Tcl interpreter?

 # Create the method on the class if
 # the caller gave arguments and body
 set argc [llength [info level 0]]
 if {$argc == 4} {
 uplevel 1 [list \
 self method $name $args $body]
 } elseif {$argc == 3} {
 return -code error \
 "wrong # args: should be\
 \"[lindex [info level 0] 0]\
 name ?args body?\""
 }

 # Get the name of the current class
 set cls [lindex [info level -1] 1]

 # Get its private “my” command
 set my \
 [info object namespace $cls]::my

 # Make the connection by forwarding
 tailcall forward $name $my $name
}

As can be seen, all a class method is can be cap-
tured through defining a method on the class and
arranging for the instances to forward calls of the
method on to the class. By forwarding through the
my command (which is always created in every
object’s namespace), the link between object and
class is preserved even if the class is renamed
(though that is almost certainly a bad idea…)

I have demonstrated three ways in which the be-
haviour of TclOO may be extended in new ways by
adding implicit method calls, class variables and
class methods. This demonstrates that the core
functionality of TclOO is extensible through pure
scripting, establishing that the users of it can do
almost anything rather than requiring evolution to
be driven from the Core Team. (A few things prob-
ably do remain to be done, as will be seen later.)

It should be noted that I do not guarantee that the
precise names of the namespaces used in the pre-
ceding two examples will be maintained across all
versions. This is because they strictly form part of
the implementation, and not the specification.

What Happened Next

One of the most important uses for TclOO has
turned out to be TDBC, which makes extensive use
of a number of key features. In particular, the
ability to handle object lifetime automatically with
minimal code (given the ownership of some objects
clearly by another, as discussed earlier) and the
ability to define custom methods at the C level in a
simple fashion have both proved to be important.
This is not to say that TDBC requires TclOO to
exist; it clearly does not and it has been carefully
kept that way. As long as a database package meets

Donal Fellows / Tcl Core Team

146

the TDBC interface specification, it is part of the
general universe. But the ability to provide the core
of the system using TclOO classes allows new
database interfaces to be written with much less
effort, which is tremendously valuable.

TclOO has also already been used in production
applications. As was reported back at EuroTcl
2009, Ansaldo STS use it to form the OO backbone
for a track viewer used in railway maintenance.
They report2 that TclOO is easy to use for this ap-
plication and a strong improvement to Tcl.

Another key claimed feature of TclOO is that it
enables the foundation of other object systems on
top of it. A particular case in point is [incr Tcl] 4.0,
which is included as contributed package with Tcl
8.6. This version which was done by Arnulf
Wiedemann, and which is founded on top of the
basic facilities provided by TclOO, passes the
whole itcl test suite (including the really obscure
parts) and means that in the future, the substantial
existing body of community code that makes use of
itcl will be able to work with new versions of Tcl
without lots of adaptation on the part of script
authors (unlike with Tcl 8.5, where the port of itcl
took quite a long time).

Supporting this has meant a number of changes to
TclOO and just goes to show that the last 10% of
compatibility often takes by far the most work.
Examples of the changes that were required were
hooks for additional models of method visibility
(because itcl has a C++-like notion of friend
classes), a method to allow classes to control what
namespaces their instances create (because unlike
commands, namespaces cannot be renamed safely),
and a way to rewrite method names before invoca-
tion (so an object can be invoked as if it was an
instance of a superclass).

What a Performance!

So let’s have a look at some performance figures!
After all, it’s better to know what careful attention
on performance (at the expense of deep richness of
class library) has produced.

Firstly, these tests were all performed on a quies-
cent MacBook Pro with a 2.6 GHz Intel Core 2
Duo processor and plenty of memory (i.e., these
tests are not in any way constrained by lack of
memory). Except where noted, they are run in
ActiveTcl 8.5.2.0.284846, mostly because that’s

2 This was not the focus of their presentation, which was
mainly about what they were doing with GUIs and how
Tcl was doing very will overall in their commercial ap-
plication.

the version I have conveniently installed and
hooked up to a local teacup-managed repository.
The version of Tcl 8.6b1.1 is the current HEAD
version from the Tcl CVS repository as of August
30, 2009, and was a threaded and optimized build
on the same hardware platform.

Secondly, these tests try to perform equal work.
Where an object system makes available the dis-
tinction between direct method calls and virtual
method calls (to use C++ terminology) both are
tested; note that most OO systems for Tcl use vir-
tual calls as they fit the Tcl ethos better. Similarly,
because the usual reason for building an object is
so that it can be used, the object creation test also
includes a trivial method call internally so that cir-
cumstances are like those that would be experi-
enced in production code. (Arguably this means
that TclOO is favoured slightly, but that’s into the
whole “lies, damned lies, and benchmarks” debate.)

Thirdly, these figures are all quoted to only 3 sig-
nificant figures. Even that may be more accurate
than they really are; multiple runs of each test are
performed, and only the best is picked each time.

However, as we look across all of these perform-
ance measurements, we see that TclOO is consis-
tently the fastest. In some cases, it is even competi-
tive with not using an object system at all.

(The source transcript – though with some floun-
dering omitted – from the run used to produce these
performance figures is supplied with this paper in
the file ppf_transcrtipt.txt. It is also in the appen-
dix to this paper.)

��������	�
�������

For method calls, we first compare calling the same
method on the same object over and over, where
the method takes a numeric argument returns that
value plus one. The state of the object is not ac-
cessed at all.

Plain old procedure
proc plus {x} {
 incr x
}

This is the fastest way of implementing the proced-
ure in Tcl 8.5.2, and the same body was used for all
the examples described in Table 1 and Figure 2.

Table 1. Execution speed for basic method calls

Tcl Object System Calls (s-1)

8.5.2 Plain old procedure 1,630,000

8.5.2 TclOO 0.6.1 1,240,000

Donal Fellows / Tcl Core Team

147

8.5.2 XOTcl 1.6.3 803,000

8.5.2 [incr Tcl] 3.4 514,000

8.5.2 Snit 2.2.3 1,080,000

8.5.2 Stooop 4.4.3(D) 996,000

8.5.2 Stooop 4.4.3(V) 75,300

8.6b1.1 Plain old procedure 936,000

8.6b1.1 TclOO 0.6.1 645,000

8.6b1.1 [incr Tcl] 4.0b3 363,000

Figure 2. Execution speed for basic method calls

As you can see, Tcl 8.6b1.1 is considerably slower
than 8.5.2 was, at least at the moment of testing.
This is because of the introduction of the non-
recursive execution engine, which significantly
impacts the speed of normal command invocation
at the moment. Also of note are the two variants of
calls for Stooop; this is because virtual calls (which
are effectively what all the other object systems do
anyway) take a massive hit in Stooop.

���������
�����������

This differs from the previous one in that the object
has to maintain state between the calls. In specific,
the object has to maintain an accumulator. For
plain old procedures, this is done by using a global
variable, but all other object systems have to use an
instance variable (or nearest equivalent).

The TclOO class declaration
oo::class create Example {
 variable acc
 method accumulate {x} {
 incr acc $x
 }
}

The above code is a fast implementation because it
uses variable resolvers to hook from the method’s
internal variable table to the object-wide variables.

This is very fast, especially for per-object methods
where it is possible to compile in direct references
to the variables rather than having to look up. (As
can be seen in Table 2 and Figure 3, the difference
isn’t gigantic but it is enough to make it faster than
a plain procedure call in 8.5.2.)

Table 2. Execution speed for stateful method calls

Tcl Object System Calls (s-1)

8.5.2 Plain old procedure 1,130,000

8.5.2 TclOO 0.6.1(cls) 1,120,000

8.5.2 TclOO 0.6.1(obj) 1,140,000

8.5.2 XOTcl 1.6.3(1) 911,000

8.5.2 XOTcl 1.6.3(2) 432,000

8.5.2 [incr Tcl] 3.4 490,000

8.5.2 Snit 2.2.3 819,000

8.5.2 Stooop 4.4.3(D) 776,000

8.5.2 Stooop 4.4.3(V) 69,700

8.6b1.1 Plain old procedure 766,000

8.6b1.1 TclOO 0.6.1(cls) 597,000

8.6b1.1 TclOO 0.6.1(obj) 626,000

8.6b1.1 [incr Tcl] 4.0b3 308,000

Figure 3. Execution speed for stateful method calls

Of interest here is the fact that TclOO has a very
small performance hit by comparison with the
equivalent plain Tcl code, and that with XOTcl it
depends heavily on how you access the variable:
(1) is directly calling the built-in incr method
which is implemented in C, and (2) is using the
instvar method to pull the variable reference into a
normal method’s scope.

��

����

����

����

������

������

������

������

	
���
�
�� 	
���
���
��

�
�
��
��
�
��
�	

�
�
�
�

��

�������
����

���
������

	
����

��	
��

���
��	
���

�����

������� !�

�������"!�

��

����

����

����

������

������

	
���
�
�� 	
���
���
��

�
�
��
��
�
��
�	

�
�
�
�

��

�������
����

���
������

	
����

��	
��

���
��	
���

�����

������ !�

Donal Fellows / Tcl Core Team

148

����������������	�	�
����

While it is really object creation that is interesting
in performance terms, for the number of objects
created to be large enough for sensible numbers
they must be deleted as well so that we are not
measuring the effects of allocating large amounts
of memory.

The itcl way to create and delete
itcl::class Example { }
itcl::delete object [Example obj]

As you can see in Table 3 and Figure 4, this is just
about the simplest test of construction and destruc-
tion possible.

Note also that from here on, there is no entry for
simple Tcl operations; object creation is roughly
where things go beyond the level where such equi-
valents exist.

Table 3. Execution speed for object create/delete

Tcl Object System Calls (s-1)

8.5.2 TclOO 0.6.1 174,000

8.5.2 XOTcl 1.6.3 127,000

8.5.2 [incr Tcl] 3.4 149,000

8.5.2 Snit 2.2.3 8,710

8.5.2 Stooop 4.4.3 45,800

8.6b1.1 TclOO 0.6.1 151,000

8.6b1.1 [incr Tcl] 4.0b3 8,170

Figure 4. Execution speed for object create/delete

As you can see, at the moment there seems to be a
definite issue with creation/destruction in itcl 4.0.
Given that the performance problems with Snit
have been well understood, it is probably the case
that itcl 4.0 is currently performing too many ac-

tions at object creation time rather than class cre-
ation time.

��������������������	���		����	�	�	����

This category of performance measurement il-
lustrates whether the costs of working with calls to
one method on many objects of the same class are
excessively expensive. This particularly tests
whether the mapping of method names to imple-
mentations at the class level is efficient. Because
method calls are approximately 10 times faster than
object creation, ten calls to the same stateful
method will be performed for each create/delete
cycle.

How to make a suitable Stooop class
stooop::class OCMCDst {
 proc OCMCDst {this} {}
 proc ~OCMCDst {this} {}
 proc accumulate {this x} {
 incr ($this,acc) $x
 }
 stooop::virtual proc \
 vaccumulate {this x} {
 incr ($this,acc) $x
 }
}

Also note that the timings for the Tcl-only object
systems are slightly less accurate as they have
fewer analysis runs.

Table 4. Execution speed for create/call/delete

Tcl Object System Calls (s-1)

8.5.2 TclOO 0.6.1 62,600

8.5.2 XOTcl 1.6.3 53,700

8.5.2 [incr Tcl] 3.4 36,400

8.5.2 Snit 2.2.3 5,240

8.5.2 Stooop 4.4.3(D) 27,800

8.5.2 Stooop 4.4.3(V) 5,950

8.6b1.1 TclOO 0.6.1 36,900

8.6b1.1 [incr Tcl] 4.0b3 6,200 ��

���

���

���

����

����

����

����

����

	
���
�
�� 	
���
���
��

�
�
��
��
�
��
�	

�
�
�
�

��

�������
����

	
����

��	
��

���
��	
���

�����

�������

Donal Fellows / Tcl Core Team

149

Figure 5. Execution speed for create/call/delete

One of the main stories here (as shown in Table 4
and Figure 5) is that Stooop remains mostly com-
petitive with the C-coded object systems despite
being in pure Tcl, though this is only if you are not
using virtual methods. Rather like the difference
between normal and virtual methods in C++, this is
an important distinction in terms of flexibility but,
if you’re prepared to live with the restrictions, it is
still a reasonable choice. The other main story re-
mains the problems with itcl 4.0b3.

�	��������������

This final performance measurement looks at how
the use of a class hierarchy impacts on perform-
ance. To make things simpler, I have every object
system doing the same thing. The superclass
method implementation is maintaining a counter of
the number of times it has been called and return-
ing the current value, and the subclass method im-
plementation is accumulating the argument value
plus the current result of the superclass’s imple-
mentation.

TclOO implementation of used classes
oo::class create SCo_base {
 variable count
 method foo {} {
 incr count
 }
}
oo::class create SCo_derived {
 superclass SCo_base
 variable acc
 method foo x {
 incr acc [next]
 incr acc $x
 }
}

Note that this test excludes the use of Snit, as that
does not support inheritance, and forces the use of
Stooop virtual methods.

Table 5. Execution speed for superclass call

Tcl Object System Calls (s-1)

8.5.2 TclOO 0.6.1 607,000

8.5.2 XOTcl 1.6.3 176,000

8.5.2 [incr Tcl] 3.4 287,000

8.5.2 Stooop 4.4.3 386,000

8.6b1.1 TclOO 0.6.1 358,000

8.6b1.1 [incr Tcl] 4.0b3 62,800

Figure 6. Execution speed for superclass call

Looking at these figures (see Table 5 and Figure 6),
it’s clear that TclOO is substantially faster than the
others at handling inheritance and calling super-
class implementations of methods. (It's not clear
that the value for Stooop is correct in this case; I
may have made an error when constructing the test
code.)

3. TclOO: Future
Where do we go from here? Well, there are a few
features that it would be exceptionally nice to have
but which did not make the cut due to a shortage of
development time.

Note that many of these areas may touch scripts
written that use TclOO. These will be specifically
noted below where they are known.

Talking Trash

TclOO follows the model of using explicit destruc-
tion of objects. This is very much the model that
has been used in the past by Tcl-based object sys-
tems (all the ones in §1 do this) but it does not ad-
dress all the problems that occur. For example, it is
too easy to create an object and then have an error
thrown which causes you to lose sight of the object.
While it is possible to discover the object again
through TclOO’s introspection facilities, it is not
trivial to go from knowing the name of an object to
whether that object is garbage. In addition, if an

��

���

���

#��

$��

���

���

���

	
���
�
�� 	
���
���
��

�
�
��
��
�
��
�	

�
�
�
�

��

�������
����

	
����

��	
��

���
��	
���

�����

������

��

����

����

#���

$���

����

����

����

	
���
�
�� 	
���
���
��

�
�
��
��
�
��
�	

�
�
�
�

��

�������
����

	
����

��	
��

��
��	
���

�������

Donal Fellows / Tcl Core Team

150

object has an explicit name from the user, the ob-
ject probably should not be subject to garbage col-
lection anyway. Classes are the classic example of
this; you hardly ever want to get rid of a class just
because you don’t have any instances of it at the
moment. Moreover, explicitly named objects (in-
cluding classes) may well be referred to from files
that have not been sourced yet; it would be wrong
to destroy them.

But the object names that come from the new con-
struction method are synthetic; they have to be kept
in variables or otherwise in a script in order to be
used correctly. This means that it is potentially pos-
sible to garbage collect them when they are no
longer referred to. The simplest way of doing this
would be to make the trigger for this be when the
name Tcl_Obj of the object ceases to have a refer-
ence to it and is deleted. That will allow the great-
est proportion of existing scripts to function cor-
rectly with no additional work, even in complex
cases where the name is passed via a master inter-
preter. It also meets the guarantees of the destructor
semantics, as they are not guaranteed to run in all
situations (e.g., if the program receives an unhan-
dled signal or destroys the interpreter). In addition,
we could easily have it that renaming the object
causes it to leave the “GC system” and require
manual lifetime management, which is effectively
the current situation anyway.

So what is the cost? Only the core “everything is a
string” semantics of Tcl itself. The issue is that
names of objects manifestly cease to be just strings;
they are imbued with additional magic that has an
impact upon the lifetime of the object they talk
about. Of course, some extensions have already
taken this step (TclJava uses it for objects from the
Java world, Tcom requires it for correctly interfac-
ing with and manipulating COM entities on Win-
dows, etc.) but it is a large step from doing these as
additional behaviours that people opt into and mak-
ing them a core part of Tcl itself.

The alternatives are those suggested earlier, such as
tying to the lifetime of a particular scope (though it
is possible to have a method to change the object’s
governing scope to the parent’s, which handles the
single largest problem with this) or command.
Also, it is possible and not difficult to add manual
reference counting, but requiring Tcl scripts to use
this would be onerous.

Because of these fundamental issues, I believe it is
unlikely that the method of GC that is probably
best in practice is unlikely to be implemented in
any version of Tcl before 9.0. Only then can we
risk venturing into this deep pit of semantic vipers.

� Storing of new Method Output in Non-
Preserving Containers (e.g., substrings)

Note again that most scripts are unlikely to see any
problems, precisely because the new method cur-
rently delivers names that are not under the caller’s
control and most places that people are likely to
store method are actually containers (variables, lists
or dictionaries).

In a Snit Over Methods

One thing that has not yet been as successful as I
wished was adopting features from Snit. Snit is
notable for two key features: delegation and sub-
methods (which are also a feature of Tk, though Tk
is not a general, flexible OO system).

TclOO does support delegation through method
forwarding, and this can be made flexible by dele-
gating to a command in the current object’s name-
space rather than a global command. Like that, con-
trolling the delegation target for multiple methods
simply becomes a matter of adjusting that single
command:

oo::class create Delegator {
 constructor {target} {
 interp alias \
 {} [namespace current]::target\
 {} $target
 }
 forward len target length
 forward idx target index
 forward bit target range
 method target {} {
 return [interp alias {} target]
 }
}

Demonstrate by going to string
set str [Delegator new ::string]
$str len "abc" ;# � 3
$str idx "abc" 1 ;# � b
$str bit "abcde" 1 2 ;# � bc
$str target ;# � ::string

However, TclOO does not support the other im-
portant feature of Snit, submethods, at all smoothly.
Firstly, a definition: a submethod is where you can
directly define methods that are ensembles of lesser
methods, and is a key feature of how a large API
(like Tk’s canvas and text widgets) is made man-
ageable. For example, the text widget’s bindings
are managed through a group of submethods so you
can do “.txt tag add …”, “.txt tag bind …”, etc.

In Snit, you declare a submethod by using a list (of
length greater than one) for a method name; the
first element becomes the master method name and
the second (and later) elements become the sub-

Donal Fellows / Tcl Core Team

151

method name. Thus it would work like this (using
TclOO syntax):

oo::class create SubmethodExample {
 method {foo bar} {a b c} {
 # ...
 }
 method {foo boo} {} {
 # ...
 }
 forward {foo foo} somewhere
}

This would create a single method, foo, which is
composed of three submethods (bar, boo, and foo)
into an ensemble. While it is possible to construct a
work-alike using a real ensemble and forwarding
(as with the delegation example) it is exceptionally
messy. It is also badly supported by the introspec-
tion facilities, which expose the implementation
details rather than the model that should be exposed
to users.

Thus a plan for the future is to create proper sup-
port in TclOO for submethods, including working
out exactly how introspection of this is to be done.
This leads to another point where compatibility
with the current implementation might be not main-
tained in the future:

� Method Names which are Well-Formed
Multi-Element Lists

If you create methods with spaces in the name, they
are likely to have a different interpretation applied
to them once we do support submethods.

Slot You In Sometime Next Year?

A feature of XOTcl that it would be good to adopt
is slots. A slot is a special class for managing a
collection of values associated with classes or ob-
jects (for example, the lists of superclasses and
declared variables). The idea is that there should be
a single relatively rich scheme for managing these
things, which are currently only exposed as lists
that you can set as a whole.

This would immediately enable simpler schemes
for adding to and rearranging these lists, which
would be a strong benefit. Right now, they have to
be given in one place. This is not particularly oner-
ous for the superclasses to be honest, but rather
painful and complex when dealing with the de-
clared variables.

The main down-side to doing this is that it requires
a syntactic space to be opened up so that it will be
clear what are the slot methods and what are the
things being manipulated. The other requirement is
that the current behaviour must remain the default
if no slot method is given; without this, existing

code will break in the common case. However, the
simplest way of achieving this is to make the slot
method names begin with a hyphen so they look
like the options used in places like namespace
import. For example:

oo::class create oo::slot {
 method -append {args} { ... }
 method -clear {args} { ... }
 # etc.
}

oo::class create SomeClass {
 variable a b c
 variable -append d e f
 # As if: variable a b c d e f
}

How exactly the slots would be plumbed into the
definition system, I do not currently know. (It’s
even possible that it might be possible with just
scripting.) But the area of incompatibility is rela-
tively clear.

� Names for Things Beginning with Hyphens

Not all names will be affected, of course, and
method names will (with the exception of filters) be
not subject to this scheme. Most others will be.

TclOO Extispicy3 for Fun and Profit

Of course, if we are going to go down the road of
having slots on the object, then we have the ques-
tion of what slots should there be. Of course, there
are the existing configurable lists (objects have
three at the instance level: mixins, filters and vari-
ables; classes have those at the class level plus the
list of superclasses) but that does not make those
the only ones that are desirable. If we were to add a
slot, what would its semantics be? If we allow the
addition of new behaviours, should we really hard-
code the current arrangement? Should there be
mechanisms to allow greater control of the basic
features of TclOO?

Right now, there is a single large system in TclOO
that is not highly flexible, and that is the code to
generate the call chain in response to a method call.
Yes, on one level you can configure it by defining
new methods, changing what mixins are config-
ured, etc. But the algorithm itself is inviolate. Fil-
ters always come before method chain traversal.
The mixins of a class always precede its super-
classes.

Wouldn’t it be interesting to be able to change this?

3 As all good students of Etruscan civilization know, this
means divination through inspection of a creature’s guts.
As you can see, Tcl is highly educational!

Donal Fellows / Tcl Core Team

152

Of course, what exactly this would look like, I have
no idea at all. Right now, there are a few internal
APIs that Itcl 4.0 uses to be able to maintain pre-
cise compatibility with previous versions (e.g.,
other ways of following a method chain than using
the next command). However, these are very much
hacks that are put in precisely to support high com-
patibility, and they do not sit particularly well with
TclOO as they inhibit the use of filters at later
stages of the method chain.

It would be better if there were a way to override
the mapping of the object’s state and method name
to a call chain so that non-standard behaviours
could be systematically supported. Mind you, be-
cause any implementation of such an override
would need to understand the internal data struc-
tures of the TclOO implementation, this would
always be an API that is officially unsupported. It
may even be a route that we never actually go
down in a general fashion; unlike the other things
mentioned which are in principle driven from what
has already been found to be useful, this instead
originates in the desire to expose everything. Such
internal reasons are rarely a good driver for action.

It�s Got a Widget!™

One of the main features that I believe will come in
Tk soon now is a megawidget support class (or
classes) so that people can write their own widgets
more simply than before. Yes, they have always
been possible to script in Tcl, but it has been dif-
ficult to do so well. The best alternative to date in
terms of sophistication has been Snit, but it does
not scale well, and BWidget looks badly dated on
some platforms.

One of the main difficulties with megawidget sys-
tems is that there are several different approaches
to building a megawidget in the first place. For ex-
ample, you could take an existing widget and add
more methods and behaviours, or you could put
several widgets together in a frame and treat them
as an overall widget. You could even build a whole
dialog in a toplevel and offer that without dressing
it up officially like a widget, much like the way that
tk_getOpenFile works on Unix. Each of these has
its own advantages and disadvantages, and perhaps
different base classes are needed for each.

In the case of simple extension of a single Tk
widget, the basic widget facilities (e.g., naming,
configuration, focus, selection) are already in place
and all that is needed is to slot the object system in
smoothly and to add any options and methods as
required. I already have experimental code to do
this (see http://wiki.tcl.tk/21103 on the Tcler’s
Wiki) though I have not done any studies of per-

formance of creation and usage. Of course, there
are a few issues left in Tk itself, notably the fact
that you can’t control the class of the widget when
used for the initial lookup of options, but these are
less of a problem than they used to be, since exten-
sive use of the X11 option database is now much
less common. A scripted workaround is also pos-
sible, but would really hurt performance.

With composed megawidgets, it is harder since
there are far more of the basic facilities that have to
be built and more things may need to change in Tk
for the integration to be natural to both creators
and, especially, users of megawidgets. One thing I
know of is that using pack or grid to put another
normal widget inside the megawidget will result in
the widget being arranged with respect to the out-
ermost widget, and not the position that the
megawidget appears to offer (this would have mat-
tered if the labelframe widget had been done as a
megawidget).

For dialogs, the main issues relate to what the
proper support for them should be at all. Maybe
they are even fine without explicit official support,
or support with only the most basic features.

Thus, while it is clear that TclOO is probably suit-
able for megawidgets, the amount of effort to pro-
vide support is high because it is probably the case
that Tk is not yet suited to being used that way.
What will take the time is resolving what correc-
tions to Tk are required and implementing those.

Donal Fellows / Tcl Core Team

153

Appendix: Log of Performance Measurements
Note that certain steps are omitted from this log (e.g., deleting of objects after measurements are complete) and
it has been split up into sections for clarity. The trace for Tcl8.6b1.1 is very similar (i.e., the input script is iden-
tical where appropriate) other than having different versions, fewer packages and different timings.

Basic Method Call
% package require Tcl
8.5.2
% proc plus x {incr x}
% time {plus 1} 1000000
0.613694793 microseconds per iteration
% expr {1000000/0.613694793}
1629474.473967062

--
% package require TclOO
0.6.1
% oo::class create TclOOExample {
 method plus x {incr x}
}
::TclOOExample
% TclOOExample create eg
::eg
% time {eg plus 1} 10000000
0.8083755836000001 microseconds per iteration
% expr {1000000/0.8083755836000001}
1237048.7435390174
% eg destroy

--
% package require XOTcl
1.6.3
% xotcl::Class XOEg
::XOEg
% XOEg instproc plus x {incr x}
% XOEg create eg
::eg
% time {eg plus 1} 1000000
1.2447734590000001 microseconds per iteration
% expr {1000000/1.2447734590000001}
803359.0311311417
% eg destroy

--
% package require Itcl
3.4
% itcl::class ITEg {
 method plus x {incr x}
}
% ITEg eg
eg
% time {eg plus 1} 1000000
1.946722511 microseconds per iteration
% expr {1000000/1.946722511}
513683.8940061962
% itcl::delete object eg

--
% package require snit
2.2.3
% snit::type SnitEg {

Donal Fellows / Tcl Core Team

154

 method plus x {incr x}
}
::SnitEg
% SnitEg eg
::eg
% time {eg plus 1} 1000000
0.9236280330000001 microseconds per iteration
% expr {1000000/0.9236280330000001}
1082686.9305297493
% eg destroy

--
% package require stooop
4.4.1
% stooop::class StooopEg {
 proc StooopEg {this} {}
 proc ~StooopEg {this} {}
 proc plus {this x} {incr x}
 ::stooop::virtual proc vplus {this x} {incr x}
}
% set eg [stooop::new StooopEg]
2
% time {StooopEg::plus $eg 1} 1000000
1.00375688 microseconds per iteration
% expr {1000000/1.00375688}
996257.18132064
% time {StooopEg::vplus $eg 1} 1000000
13.272679443 microseconds per iteration
% expr {1000000/13.272679443}
75342.73725923512

Stateful Method Call
% package require Tcl
8.5.2
% proc acc x {global acc; incr acc $x}
% time {acc 2} 1000000
0.883275877 microseconds per iteration
% expr 1000000/0.883275877
1132149.1122303116

--
% package require TclOO
0.6.1
% oo::class create TclOOExample {
 variable acc
 method acc x {incr acc $x}
}
::TclOOExample
% TclOOExample create eg
::eg
% time {eg acc 1} 1000000
0.890838787 microseconds per iteration
% expr 1000000/0.890838787
1122537.5618944622
% oo::object create egobj
::egobj
% oo::objdefine egobj {
 variable acc
 method accumulate x {incr acc $x}
}
% time {egobj accumulate 1} 1000000
0.8782098199999999 microseconds per iteration
% expr 1000000/0.8782098199999999
1138680.0480094838

Donal Fellows / Tcl Core Team

155

--
% package require XOTcl
1.6.3
% xotcl::Class XOEg
% XOEg create eg2
::eg2
% time {eg2 incr acc 1} 1000000
1.097875676 microseconds per iteration
% expr 1000000/1.097875676
910849.9458184554
% XOEg instproc acc x {
 ::xotcl::my instvar acc
 incr acc $x
}
% time {eg2 acc 1} 1000000
2.31492083 microseconds per iteration
% expr 1000000/2.31492083
431980.215928162

--
% package require Itcl
3.4
% itcl::class ITEg {
 variable acc 0
 method accumulate x {incr acc $x}
}
% ITEg eg3
eg3
% time {eg3 accumulate 1} 1000000
2.040263924 microseconds per iteration
% expr 1000000/2.040263924
490132.6677577425

--
% package require snit
2.2.3
% snit::type SnitEg {
 variable acc
 method accumulate x {incr acc $x}
}
::SnitEg
% SnitEg eg4
::eg4
% time {eg4 accumulate 1} 1000000
1.221689523 microseconds per iteration
% expr 1000000/1.221689523
818538.5739777683

--
% package require stooop
4.4.1
% stooop::class StooopEg {
 proc StooopEg {this} {}
 proc ~StoopEg {this} {}
 proc accumulate {this x} {incr ($this,acc) $x}
 stooop::virtual proc vaccumulate {this x} {incr ($this,acc) $x}
}
% set eg [stooop::new StooopEg]
4
% time {StooopEg::accumulate $eg 1} 1000000
1.304988281 microseconds per iteration
% time {StooopEg::vaccumulate $eg 1} 1000000
1.288521466 microseconds per iteration
% expr 1000000/1.288521466
776083.3066323166

Donal Fellows / Tcl Core Team

156

Object Create and Delete
% package require TclOO
0.6.1
% time {[oo::object create ::obj] destroy} 100000
5.7581981099999995 microseconds per iteration
% expr 1000000/5.7581981099999995
173665.43854462836

--
% package require XOTcl
1.6.3
% xotcl::Class XOEg
::XOEg
% time {[XOEg2 create eg] destroy} 100000
7.893295159999999 microseconds per iteration
% expr 1000000/7.893295159999999
126689.80187990336

--
% package require Itcl
3.4
% itcl::class Example { }
% time {itcl::delete object [Example obj]} 100000
6.7288695700000005 microseconds per iteration
% expr 1000000/6.7288695700000005
148613.37251332693

--
% package require snit
2.2.3
% snit::type Sniteg {}
::Sniteg
% time {[Sniteg create e] destroy} 100000
114.74785177 microseconds per iteration
% expr 1000000/114.74785177
8714.76009855413

--
% package require stooop
4.4.1
% stooop::class StooopEg {
 proc StooopEg {this} {}
 proc ~StooopEg {this} {}
}
% time {stooop::delete [stooop::new StooopEg]} 100000
21.82625304 microseconds per iteration
% expr 1000000/21.82625304
45816.38443242386

Object Create, Method Call, and Delete
% package require TclOO
0.6.1
% oo::class create OCMCDo {
 variable acc
 method accumulate x {incr acc $x}
}
::OCMCDo
% time {
 OCMCDo create obj
 obj accumulate 1; obj accumulate 2; obj accumulate 3; obj accumulate 4
 obj accumulate 5; obj accumulate 6; obj accumulate 7; obj accumulate 8
 obj accumulate 9; obj accumulate 10
 obj destroy

Donal Fellows / Tcl Core Team

157

} 100000
15.9744709 microseconds per iteration
% expr 1000000/15.9744709
62599.88241613686

--
% package require XOTcl
1.6.3
% time {
 xotcl::Object create obj
 obj incr acc 1; obj incr acc 2; obj incr acc 3; obj incr acc 4
 obj incr acc 5; obj incr acc 6; obj incr acc 7; obj incr acc 8
 obj incr acc 9; obj incr acc 10
 obj destroy
} 100000
18.61800578 microseconds per iteration
% expr 1000000/18.61800578
53711.44535115726

--
% package require Itcl
3.4
% itcl::class OCMCDi {
 variable acc 0
 method accumulate x {incr acc $x}
}
% time {
 OCMCDi obj
 obj accumulate 1; obj accumulate 2; obj accumulate 3; obj accumulate 4
 obj accumulate 5; obj accumulate 6; obj accumulate 7; obj accumulate 8
 obj accumulate 9; obj accumulate 10
 itcl::delete object obj
} 100000
27.50890204 microseconds per iteration
% expr 1000000/27.50890204
36351.86888033282

--
% package require snit
2.2.3
% snit::type OCMCDsn {
 variable acc
 method accumulate x {incr acc $x}
}
::OCMCDsn
% time {
 OCMCDsn obj
 obj accumulate 1; obj accumulate 2; obj accumulate 3; obj accumulate 4
 obj accumulate 5; obj accumulate 6; obj accumulate 7; obj accumulate 8
 obj accumulate 9; obj accumulate 10
 obj destroy
} 30000
190.97659513333335 microseconds per iteration
% expr 1000000/190.97659513333335
5236.24373605485

--
% package require stooop
4.4.1
% stooop::class OCMCDst {
 proc OCMCDst {this} {}
 proc ~OCMCDst {this} {}
 proc accumulate {this x} {incr ($this,acc) $x}
 stooop::virtual proc vaccumulate {this x} {incr ($this,acc) $x}
}
% time {

Donal Fellows / Tcl Core Team

158

 set obj [stooop::new OCMCDst]
 OCMCDst::accumulate $obj 1; OCMCDst::accumulate $obj 2
 OCMCDst::accumulate $obj 3; OCMCDst::accumulate $obj 4
 OCMCDst::accumulate $obj 5; OCMCDst::accumulate $obj 6
 OCMCDst::accumulate $obj 7; OCMCDst::accumulate $obj 8
 OCMCDst::accumulate $obj 9; OCMCDst::accumulate $obj 10
 stooop::delete $obj
} 30000
35.96880766666666 microseconds per iteration
% expr 1000000/35.96880766666666
27801.86680824366
% time {
 set obj [stooop::new OCMCDst]
 OCMCDst::vaccumulate $obj 1; OCMCDst::vaccumulate $obj 2
 OCMCDst::vaccumulate $obj 3; OCMCDst::vaccumulate $obj 4
 OCMCDst::vaccumulate $obj 5; OCMCDst::vaccumulate $obj 6
 OCMCDst::vaccumulate $obj 7; OCMCDst::vaccumulate $obj 8
 OCMCDst::vaccumulate $obj 9; OCMCDst::vaccumulate $obj 10
 stooop::delete $obj
} 30000
168.15855409999998 microseconds per iteration
% expr 1000000/168.15855409999998
5946.768544437669

Superclass Call
% package require TclOO
0.6.1
% oo::class create SCo_base {
 variable count
 method foo {} {
 incr count
 }
}
::SCo_base
% oo::class create SCo_derived {
 superclass SCo_base
 variable acc
 method foo x {
 incr acc [next]
 incr acc $x
 }
}
::SCo_derived
% SCo_derived create obj
::obj
% time {obj foo 1} 1000000
1.647879855 microseconds per iteration
% expr 1000000/1.647879855
606840.3573026262

--
% package require XOTcl
1.6.3
% xotcl::Class SCx_base
::SCx_base
% SCx_base instproc foo {x} {
 xotcl::my incr count
}
% xotcl::Class SCx_derived -superclass SCx_base
::SCx_derived
% SCx_derived instproc foo {x} {
 xotcl::my incr acc [xotcl::next]
 xotcl::my incr acc $x
}

Donal Fellows / Tcl Core Team

159

% SCx_derived create obj
::obj
% time {obj foo 1} 1000000
5.67232063 microseconds per iteration
% expr 1000000/5.67232063
176294.68875774747

--
% package require Itcl
3.4
% itcl::class SCi_base {
 variable count
 method foo {} {
 incr count
 }
}
% itcl::class SCi_derived {
 inherit SCi_base
 variable acc
 method foo x {
 incr acc [SCi_base::foo]
 incr acc $x
 }
}
% SCi_derived obj
obj
% time {obj foo 1} 1000000
3.483079099 microseconds per iteration
% expr 1000000/3.483079099
287102.29414172715

--
% package require stooop
4.4.1
% stooop::class SCs_base {
 proc SCs_base {this} {}
 proc ~SCs_base {this} {}
 stooop::virtual proc foo {this} {
 incr ($this,count)
 }
}
% stooop::class SCs_derived {
 proc SCs_derived {this} SCs_base {} {}
 proc ~SCs_derived {this} {}
 stooop::virtual proc foo {this x} {
 incr ($this,acc) [SCs_base::_foo $this]
 incr ($this,acc) $x
 }
}
% set obj [stooop::new SCs_derived]
170011
% time {SCs_derived::foo $obj 1} 100000
15.915702479999998 microseconds per iteration
% expr 1000000/15.915702479999998
62831.031257126146

Donal Fellows / Tcl Core Team

160

