

Fossil:
New Ideas In

Version Control

D. Richard Hipp
2009-09-30

What Is Fossil?

● Distributed version
control

● Distributed bugs
tracking

● Distributed wiki
● Built-in web interface
● “Autosync” mode

● Self-contained
● HTTP for all network

traffic
● CGI-enabled
● Embedded

Documentation
● Robust & Reliable

What Is Fossil?

● Distributed version
control

● Distributed bugs
tracking

● Distributed wiki
● Built-in web interface
● “Autosync” mode

● Self-contained
● HTTP for all network

traffic
● CGI-enabled
● Embedded

Documentation
● Robust & Reliable

 Common Unusual Unique

Fundamental Concepts

● A “repository” is a bag
of “artifacts”

● Artifacts identified by
SHA1 hash

● Artifacts are
unordered

001
004

005

002
003

Fundamental Concepts

● Sync by sharing
artifacts

● Sync mechanism has
no knowledge of
versions, wiki, or
tickets

● HTTP used for sync
transport

001
004

005

002
003

012

004

005

007

003

sync

001
002

007
012

Fundamental Concepts

● After sync,
repositories have the
same set of artifacts

● Delta and zlib
compression
minimizes bandwidth

● Shunned and private
files excluded from
sync

001
004

005

002
003

012

004

005

007

003

012

007

001

002

Classes of Artifacts

● Manifest
– List of files
– Parent check-in
– Check-in comment

● Wiki page edit
● Ticket change
● Cluster
● Control
● General content

Repository Implementation

● Artifacts stores as BLOBs in an SQLite
database
– Delta compression
– Z-lib compression

● Cross-reference and summary data stored in
auxiliary tables of the same database

● “fossil rebuild” scans artifacts to rebuild
auxiliary tables

fossil new filename

● Create a new repository

fossil clone url filename

● Make a copy of an existing repository
● Ex URL: http://userid:password@hostname:port/path
● Ex URL: file:///path

mailto:password@hostname

fossil open filename

● Open a local source tree

fossil info
fossil changes
fossil status
fossil extra
fossil ls

● Information about the local source tree

fossil push [url]
fossil pull [url]
fossil sync [url]

● Synchronize repositories

fossil update [version]
fossil merge version

● Synchronize local source tree

fossil undo
● Back out prior update or merge

fossil commit

● Create new version from local tree
● --private flag
● --branch flag

fossil server [filename]

● Starts an HTTP server on the repository given
● --port flag
● Works on both unix and windows

● Automatically finds an open TCP port
● Automatically launches web browser

fossil ui [filename]

Web interface supports....

● Timelines of changes
● File browsing
● diffs and “annotate”
● wiki & ticket viewing and editing
● Editing check-in comments and display colors
● User management
● “Shunning” inappropriate content
● Appearance (CSS, headers, footers, etc)

Autosync mode

● Pull before update
● Pull before commit
● Push after commit
● Helps prevent needless forking

and branching
● Enabled by default

Self-contained

● Single binary: fossil or fossil.exe
– Client & server code
– Diff & merge logic
– built-in web server

● Download one file and put on your PATH
● No other required software (zero, nada, nil)
● Chroot ready
● Optional: GPG, custom diff programs

HTTP Data Transport

● Remote repositories specified by URL
● Works from behind restrictive firewalls
● Full support for proxies
● Deploy on economical shared host account
● Bandwidth efficient

– Suitable for use over a dial-up connection
– Typical check-in generates ~5KB of traffic

CGI Server Setup

#!/usr/bin/fossil
repository: /fossil/fossil.fossil

The actual 2-line CGI script that runs the canonical self-hosting
fossil repository:

Simple Wiki Formatting Rules

● Blank line for paragraph break
● “*” for bullets
● “1.” for enumerations
● Indented line for indented paragraph
● Hyperlinks in [...]
● Safe subset of HTML for advanced markup
● <verbatim>...</verbatim>
● <nowiki>..</nowiki>

Embedded Documentation

● The fossil website is implemented this way
● version can be any version prefix, branch

name, “tip”, or “ckout”
– “ckout” allows viewing website before check-in

● MIME-Type from filepath suffix
● The “.wiki” suffix renders using wiki rules

http://baseurl/doc/version/filepath

Robust & Reliable

● Extensive use of MD5 and SHA1 checksums
– Each artifact identified by SHA1
– Control artifacts contain an MD5 checksum
– Entire content of a check-in verified by MD5
– Sync messages checked by MD5

● Recoverability checked prior to SQLite
transaction commit

● No content has ever been lost from a fossil
repository

fossil all push
fossil all pull
fossil all sync
fossil all rebuild

● Run commands against all repositories

fossil help [commandname]
● Built-in help

Additional Noteworthy Features

autosync

After return:
fossil all push

Before travel:
fossil all pull

Self-hosting since 2007-07-21

● http://www.fossil-scm.org/
● 1356 check-ins
● 310 files in the source tree
● 5366 artifacts
● 161 MB of content in a 9.2 MB repository

– 17:1 compression ratio
● 4.8 MB network traffic to clone

As of 2009-09-26 21:00 UTC

Complete SQLite Source History

● http://www.sqlite.org/src
● 6863 check-ins over 9.25 years
● 923 files in the source tree
● 29252 artifacts
● 1.3 GB of content in a 22 MB repository

– CVS required ~320 MB
– 56:1 compression ratio

● 13.8 MB network traffic to clone

As of 2009-09-26 21:00 UTC

Review

● Distributed version
control

● Distributed bugs
tracking

● Distributed wiki
● Built-in web interface
● “Autosync” mode

● Self-contained
● HTTP for all network

traffic
● CGI-enabled
● Embedded

Documentation
● Robust & Reliable

 Common Unusual Unique

Summary

● Pushing the state of
the art in distributed
version control

● Stable and ready to
use

● Questions?
● Live Demo?

http://www.fossil-scm.org/

