
A Tcl/Tk Add-on Script for Gridgen:

Butterfly Maker

- Wenny Wang, Pointwise, Inc.

Thursday, October 1, 2009

Gridgen Introduction

• Meshing software used by engineers and scientists
worldwide since 1984.

• Complete toolkit for generating meshes with a variety
of cell types (i.e., hexahedra, tetrahedra, prism).

• “Bottom-up” meshing approach (database-connector-
domain-block).

Thursday, October 1, 2009

Gridgen Introduction

• Meshing software used by engineers and scientists
worldwide since 1984.

• Complete toolkit for generating meshes with a variety
of cell types (i.e., hexahedra, tetrahedra, prism).

• “Bottom-up” meshing approach (database-connector-
domain-block).

Thursday, October 1, 2009

Gridgen Introduction

• Meshing software used by engineers and scientists
worldwide since 1984.

• Complete toolkit for generating meshes with a variety
of cell types (i.e., hexahedra, tetrahedra, prism).

• “Bottom-up” meshing approach (database-connector-
domain-block).

Thursday, October 1, 2009

Gridgen Introduction

Connector

• Meshing software used by engineers and scientists
worldwide since 1984.

• Complete toolkit for generating meshes with a variety
of cell types (i.e., hexahedra, tetrahedra, prism).

• “Bottom-up” meshing approach (database-connector-
domain-block).

Thursday, October 1, 2009

Gridgen Introduction

Connector
Domain

• Meshing software used by engineers and scientists
worldwide since 1984.

• Complete toolkit for generating meshes with a variety
of cell types (i.e., hexahedra, tetrahedra, prism).

• “Bottom-up” meshing approach (database-connector-
domain-block).

Thursday, October 1, 2009

Gridgen Introduction

Connector
Domain

Block

• Meshing software used by engineers and scientists
worldwide since 1984.

• Complete toolkit for generating meshes with a variety
of cell types (i.e., hexahedra, tetrahedra, prism).

• “Bottom-up” meshing approach (database-connector-
domain-block).

Thursday, October 1, 2009

• Glyph (Tcl+Gridgen specific commands) provides a text-
based, procedural interface to Gridgen’s features.

• Glyph scripts can be executed in batch or Gridgen’s user
interface.

• Glyph scripts are useful for:
- Establishing preferred display states and default values.
- Encapsulating repetitive tasks.
- Developing specialized meshing applications.

package require PWI_Glyph 1.6.9

gg::tkLoad

set scriptDir [file dirname [info script]]
set nblks [llength [gg::blkGetAll]]

if { $nblks == 0 } {
 puts "There aren't any enabled blocks.”
 exit
} else {
 set blklist [gg::blkGetAll]
}
......

Glyph Scripting

Thursday, October 1, 2009

• Glyph (Tcl+Gridgen specific commands) provides a text-
based, procedural interface to Gridgen’s features.

• Glyph scripts can be executed in batch or Gridgen’s user
interface.

• Glyph scripts are useful for:
- Establishing preferred display states and default values.
- Encapsulating repetitive tasks.
- Developing specialized meshing applications.

package require PWI_Glyph 1.6.9

gg::tkLoad

set scriptDir [file dirname [info script]]
set nblks [llength [gg::blkGetAll]]

if { $nblks == 0 } {
 puts "There aren't any enabled blocks.”
 exit
} else {
 set blklist [gg::blkGetAll]
}
......

Glyph Scripting

Enable Tk commands

Thursday, October 1, 2009

• Glyph (Tcl+Gridgen specific commands) provides a text-
based, procedural interface to Gridgen’s features.

• Glyph scripts can be executed in batch or Gridgen’s user
interface.

• Glyph scripts are useful for:
- Establishing preferred display states and default values.
- Encapsulating repetitive tasks.
- Developing specialized meshing applications.

package require PWI_Glyph 1.6.9

gg::tkLoad

set scriptDir [file dirname [info script]]
set nblks [llength [gg::blkGetAll]]

if { $nblks == 0 } {
 puts "There aren't any enabled blocks.”
 exit
} else {
 set blklist [gg::blkGetAll]
}
......

Glyph Scripting

Glyph command

Enable Tk commands

Thursday, October 1, 2009

• What is an O-grid?

- A series of blocks created with grid
lines arranged into an “O” shape or
a wrapping nature (i.e., “C” shape).

• What are the basic types?

- O-H topology
- C-H topology
- L-H topology

Butterfly (O-H) Topology

H-topology O-H topology

O-H C-H L-H

Thursday, October 1, 2009

• What is an O-grid?

- A series of blocks created with grid
lines arranged into an “O” shape or
a wrapping nature (i.e., “C” shape).

• What are the basic types?

- O-H topology
- C-H topology
- L-H topology

Butterfly (O-H) Topology

H-topology O-H topology

O-H C-H L-H

Butterfly face

Thursday, October 1, 2009

• What is an O-grid?

- A series of blocks created with grid
lines arranged into an “O” shape or
a wrapping nature (i.e., “C” shape).

• What are the basic types?

- O-H topology
- C-H topology
- L-H topology

Butterfly (O-H) Topology

H-topology O-H topology

O-H C-H L-H

Butterfly
Connectors

Butterfly face

Thursday, October 1, 2009

• Why is an O-grid so useful?
 H topology O-H topology

 - Reduce skew where a block corner must lie on a continuous curve/surface.
 - Improves efficiency of grid point clustering near walls.
 - Resolve the boundary layer locally around solid bodies without unnecessarily
 increasing overall grid point count.

Butterfly Topology (Cont …)

Thursday, October 1, 2009

• Why is an O-grid so useful?
 H topology O-H topology

 - Reduce skew where a block corner must lie on a continuous curve/surface.
 - Improves efficiency of grid point clustering near walls.
 - Resolve the boundary layer locally around solid bodies without unnecessarily
 increasing overall grid point count.

Butterfly Topology (Cont …)

Wall

Normal-to-Wall direction

Thursday, October 1, 2009

• Why is an O-grid so useful?
 H topology O-H topology

 - Reduce skew where a block corner must lie on a continuous curve/surface.
 - Improves efficiency of grid point clustering near walls.
 - Resolve the boundary layer locally around solid bodies without unnecessarily
 increasing overall grid point count.

Butterfly Topology (Cont …)

Wall

Normal-to-Wall direction
Bad cells!

Thursday, October 1, 2009

• Why is an O-grid so useful?
 H topology O-H topology

 - Reduce skew where a block corner must lie on a continuous curve/surface.
 - Improves efficiency of grid point clustering near walls.
 - Resolve the boundary layer locally around solid bodies without unnecessarily
 increasing overall grid point count.

Butterfly Topology (Cont …)

Wall

Normal-to-Wall direction
Bad cells! Good cells!

Thursday, October 1, 2009

Background (Cont ...)

• Why do we need a script?
- Gridgen does not have automatic O-H grid creation capability.
- Interactively changing grid topologies can take hours.
- This is “one of the most important features” of our major competitor.

Thursday, October 1, 2009

Script Overview

• Written in Tcl/Tk 8.3 and Glyph 1.0.
• Approximately 4,000 lines and 50 procedures.
• Main features:

- Quickly transform H-blocks to O-H topology blocks (1 min vs. 1 hour or
more).

- Propagate new topology in a series of H-blocks regardless of their
orientation.

- Maintain connector distributions in the propagating direction.
- Allow non-homogeneous scaling of the new O/H blocks in three directions

(I/J/K).
- Allow butterfly faces consisting of multiple domains.
- Allow butterfly faces with high curvature and/or slope discontinuity.

Thursday, October 1, 2009

User Interface

Thursday, October 1, 2009

User Interface

Thursday, October 1, 2009

User Interface

Interactive block
selection

Block selection
via list box
bind .right.top.list <<ListboxSelect>> { BlkSelect }

pack [button .right.select \
-text "Click to select interactively" \
-command select] -side top -pady 8 -padx 1

Thursday, October 1, 2009

User Interface

Interactive block
selection

Block selection
via list box
bind .right.top.list <<ListboxSelect>> { BlkSelect }

pack [button .right.select \
-text "Click to select interactively" \
-command select] -side top -pady 8 -padx 1 Propagating

direction

pack [radiobutton .left.dir.i -text "I" -command { \
 global Direction Duplicate_Direction; \
 if { [string compare $Direction \
 $Duplicate_Direction] != 0 } { SwitchMode 1 }; \
 set Duplicate_Direction $Direction } \
 -variable Direction -value I] -side left -expand 1

Thursday, October 1, 2009

User Interface

Interactive block
selection

Block selection
via list box
bind .right.top.list <<ListboxSelect>> { BlkSelect }

pack [button .right.select \
-text "Click to select interactively" \
-command select] -side top -pady 8 -padx 1 Propagating

direction

pack [radiobutton .left.dir.i -text "I" -command { \
 global Direction Duplicate_Direction; \
 if { [string compare $Direction \
 $Duplicate_Direction] != 0 } { SwitchMode 1 }; \
 set Duplicate_Direction $Direction } \
 -variable Direction -value I] -side left -expand 1

3D scaler

O-grid refining

Forcing propagation check New topology preview

pack [makeInputField \
.left.values dist \
"H Region 3D Scaler (0,1.0):"\
oScaleFac] \
-fill x -padx 2 -pady 4

checkbutton .left.values.propagate -text \
 "Propagate Topology" -variable Propagate \
 -command {Redraw}

 pack [makeInputField \
.left.values pts \
"Grid Points on Ogrid Ribs:"\
oDimension] \
-fill x -padx 2 -pady 4

button .left.values.preview \
 -text "Preview Topology" \
 -command {global locatorH_prop; \
 Redraw; set locatorH_prop {}}

Thursday, October 1, 2009

Main Workflow
• Validate user input.
• Obtain the propagating block list.
• Determine which domains will be turned into “butterfly

domains” and which will be kept.
• Locate the center domain on each butterfly face and create it

butterfly connectors.
• Create new internal connectors in the propagating direction.
• If more than one block is selected, make sure no conflicts

occur at the block interface.
• Match up the distributions of new connectors with their

counterparts in the original blocks.
• Assemble the butterfly and internal domains.
• Assemble the new O-H blocks.

Thursday, October 1, 2009

#1: User Input Diagnostics
• Is the scaling factor valid?

- The three elements, S1, S2 and S3,
must be in the range of (0, 1).

• Is the grid point number valid?
• Is the propagating block list

valid?
- The blocks have to be connected one to

another.
- The blocks have to share full faces in

the propagating direction.
- There is no duplicated blocks in the list.

• Are there any temporary
connectors that need to be
eliminated?

- Temporary connectors are created for
topology preview.

- They have to be removed whenever
preview is updated.

if { $oScale_1 > 1.0 || $oScale_2 > 1.0 || $oScale_3 > 1.0 \
 || $oScale_1 < 0.0 || $oScale_2 < 0.0 || $oScale_3 < 0.0 } {
 ErrorMsg "Invalid scaling factor input!"
 return
 }

proc getPropagatedBlockList { blk dir } {
 global Propagate
 # If Propagate checkbox is not checked, the original
 # selected block will be returned immediately.
 if { $Propagate == 0 } {
 return $blk
 } else {
 lappend blkList "$blk $dir"
 for { set i 0 } { $i < [llength $blkList] } { incr i } {
 foreach n [getAdjacentBlocks [lindex \
 [lindex $blkList $i] 0] \
 [lindex [lindex $blkList $i] 1]] {
 if { [lsearch $blkList $n] == -1 } {
 lappend blkList "$n"
 }
 }
 }
 return $blkList
 }

Thursday, October 1, 2009

#2: Universal Indexing

• Operates independently to (I,
J, K) once it is defined.

• All the domain and connector
indices can be represented by
two of the following
variables:
- ind1_min/max
- ind2_min/max
- ind3_min/max
- location on butterfly

 face (i.e., center, ogrid1,
 ogrid2, ogrid3 and
 ogrid4)

Block
Name center ogrid1

Domain
Index

(center, ind3_min),
(center, ind3_max),
(center, ind1_min),
(center, ind1_max),
(center, ind2_min),
(center, ind2_max)

(ogrid1, ind3_min),
(ogrid1, ind3_max),

(original face 1),
(center, ind2_min),

(corner1),
(corner2)

Connector
Index

(ind2_min, ind3_min),
(ind1_max, ind3_min),
(ind2_max, ind3_min),
(ind1_min, ind3_min),

......

(ind2_min, ind1_min),
(ind1_min,
ind3_max),
(ind2_max,
ind1_min),

(ind1_min, ind3_min),
......

Table. 1 Example of grid entity indices

 gg::blkBegin -type STRUCTURED
 gg::faceBegin
 gg::faceAddDom $doms(center,ind3_min)
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom $doms(center,ind3_max)
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom $doms(center,ind1_min)
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom $doms(center,ind1_max)
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom $doms(center,ind2_min)
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom $doms(center,ind2_max)
 gg::faceEnd
 set blks(center) [gg::blkEnd]

Thursday, October 1, 2009

#3: H Domain Locator

• 3-D scaler implementation
- (S1, S2, S3)
- (S1) Length between index 1 and index

2 is approximately the scaled length in J
direction.

- (S2) Length between index 3 and index
4 is approximately the scaled length in
K direction.

• Pinpoint the 4 H domain
corners.

• Create butterfly connectors.
• Assemble H and O domains.
• Shape information check

S1

S2

foreach end {ind3_min ind3_max} {
 foreach beg {ind1_min ind1_max} {
 set pt0 [gg::conGetPt $con($beg,$end) -arc 0]
 set pt1 [gg::conGetPt $con($beg,$end) -arc 1]
 if { [catch {gg::conDim $con($beg,$end) $max2}] == 1 } {
 gg::conRedimBegin
 gg::conRedim $con($beg,$end) $max2
 gg::conRedimEnd
 }
 if [catch {gg::conGetPt $con($beg,$end) -arc 0}] {
 set con($beg,$end) \
 [getConnectorByEndPoints $pt0 $pt1]
 }
 }

}

gg::dbImport $butterflyDBFile -style PLOT3D \
 -format ASCII -precision DOUBLE

gg::domProject $butterflyDomList -type CLOSEST_PT \
 -maintain_linkage

Thursday, October 1, 2009

#3: H Domain Locator

• 3-D scaler implementation
- (S1, S2, S3)
- (S1) Length between index 1 and index

2 is approximately the scaled length in J
direction.

- (S2) Length between index 3 and index
4 is approximately the scaled length in
K direction.

• Pinpoint the 4 H domain
corners.

• Create butterfly connectors.
• Assemble H and O domains.
• Shape information check

S1

S2

foreach end {ind3_min ind3_max} {
 foreach beg {ind1_min ind1_max} {
 set pt0 [gg::conGetPt $con($beg,$end) -arc 0]
 set pt1 [gg::conGetPt $con($beg,$end) -arc 1]
 if { [catch {gg::conDim $con($beg,$end) $max2}] == 1 } {
 gg::conRedimBegin
 gg::conRedim $con($beg,$end) $max2
 gg::conRedimEnd
 }
 if [catch {gg::conGetPt $con($beg,$end) -arc 0}] {
 set con($beg,$end) \
 [getConnectorByEndPoints $pt0 $pt1]
 }
 }

}

gg::dbImport $butterflyDBFile -style PLOT3D \
 -format ASCII -precision DOUBLE

gg::domProject $butterflyDomList -type CLOSEST_PT \
 -maintain_linkage

Thursday, October 1, 2009

#3: H Domain Locator

• 3-D scaler implementation
- (S1, S2, S3)
- (S1) Length between index 1 and index

2 is approximately the scaled length in J
direction.

- (S2) Length between index 3 and index
4 is approximately the scaled length in
K direction.

• Pinpoint the 4 H domain
corners.

• Create butterfly connectors.
• Assemble H and O domains.
• Shape information check

S1

S2

foreach end {ind3_min ind3_max} {
 foreach beg {ind1_min ind1_max} {
 set pt0 [gg::conGetPt $con($beg,$end) -arc 0]
 set pt1 [gg::conGetPt $con($beg,$end) -arc 1]
 if { [catch {gg::conDim $con($beg,$end) $max2}] == 1 } {
 gg::conRedimBegin
 gg::conRedim $con($beg,$end) $max2
 gg::conRedimEnd
 }
 if [catch {gg::conGetPt $con($beg,$end) -arc 0}] {
 set con($beg,$end) \
 [getConnectorByEndPoints $pt0 $pt1]
 }
 }

}

(I_min,index 1,index 3)

(I_min,index 2,index 3)
(I_min,index 2,index 4)

(I_min,index 1,index 4)

gg::dbImport $butterflyDBFile -style PLOT3D \
 -format ASCII -precision DOUBLE

gg::domProject $butterflyDomList -type CLOSEST_PT \
 -maintain_linkage

Thursday, October 1, 2009

#4: Point Snapping Method

• Snap a point when one of
the following conditions is
met:

- The test length is close to the target
length #1.

- The test length is close to the target
length #2.

- The difference between the test and
target length #1 is smaller than the local
spacing.

- The difference between the test and
target length #2 is smaller than the local
spacing.

• Snapped point checkup
- No point/1 point/2 points or more than 2

points are snapped.
- Different points are snapped at block

interfaces in the propagating direction.

set iL 0.0
set corner1_Pts {}

set targetL_1 [expr $iL *(1.0-[lindex $oScaleFac 0]) / 2.0]
set targetL_2 [expr $iL - $targetL_1]
set testL 0.0

for { set ii 1 } { $ii < $max1 } { incr ii 1 } {
 set testL [expr $testL + [lindex $iSpacing [expr $ii-1]]]
 if { [expr abs($targetL_1 - $testL)] < $tol || \
 [expr abs($targetL_2 - $testL)] < $tol || \
 [expr abs($testL - $targetL_1)] < \
 [lindex $iSpacing [expr $ii-1]] || \
 [expr abs($testL - $targetL_2)] < \
 [lindex $iSpacing [expr $ii-1]] } {
 lappend corner1_Pts [expr $ii+1]
 }
}
set ogrid_i [lindex $corner1_Pts 0]

Thursday, October 1, 2009

#4: Point Snapping Method

• Snap a point when one of
the following conditions is
met:

- The test length is close to the target
length #1.

- The test length is close to the target
length #2.

- The difference between the test and
target length #1 is smaller than the local
spacing.

- The difference between the test and
target length #2 is smaller than the local
spacing.

• Snapped point checkup
- No point/1 point/2 points or more than 2

points are snapped.
- Different points are snapped at block

interfaces in the propagating direction.

set iL 0.0
set corner1_Pts {}

set targetL_1 [expr $iL *(1.0-[lindex $oScaleFac 0]) / 2.0]
set targetL_2 [expr $iL - $targetL_1]
set testL 0.0

for { set ii 1 } { $ii < $max1 } { incr ii 1 } {
 set testL [expr $testL + [lindex $iSpacing [expr $ii-1]]]
 if { [expr abs($targetL_1 - $testL)] < $tol || \
 [expr abs($targetL_2 - $testL)] < $tol || \
 [expr abs($testL - $targetL_1)] < \
 [lindex $iSpacing [expr $ii-1]] || \
 [expr abs($testL - $targetL_2)] < \
 [lindex $iSpacing [expr $ii-1]] } {
 lappend corner1_Pts [expr $ii+1]
 }
}
set ogrid_i [lindex $corner1_Pts 0]

Thursday, October 1, 2009

#4: Point Snapping Method

• Snap a point when one of
the following conditions is
met:

- The test length is close to the target
length #1.

- The test length is close to the target
length #2.

- The difference between the test and
target length #1 is smaller than the local
spacing.

- The difference between the test and
target length #2 is smaller than the local
spacing.

• Snapped point checkup
- No point/1 point/2 points or more than 2

points are snapped.
- Different points are snapped at block

interfaces in the propagating direction.

set iL 0.0
set corner1_Pts {}

set targetL_1 [expr $iL *(1.0-[lindex $oScaleFac 0]) / 2.0]
set targetL_2 [expr $iL - $targetL_1]
set testL 0.0

for { set ii 1 } { $ii < $max1 } { incr ii 1 } {
 set testL [expr $testL + [lindex $iSpacing [expr $ii-1]]]
 if { [expr abs($targetL_1 - $testL)] < $tol || \
 [expr abs($targetL_2 - $testL)] < $tol || \
 [expr abs($testL - $targetL_1)] < \
 [lindex $iSpacing [expr $ii-1]] || \
 [expr abs($testL - $targetL_2)] < \
 [lindex $iSpacing [expr $ii-1]] } {
 lappend corner1_Pts [expr $ii+1]
 }
}
set ogrid_i [lindex $corner1_Pts 0]

Thursday, October 1, 2009

#5. Multi-domain Butterfly Face
• Key tasks:

- Detect shared edge.
- Sort cons on a multi-con edge.
- Remove original cons that are inside

of butterfly faces.

• Strategy evaluation:
- Join butterfly domains into single H-

domain.
- Keep butterfly domains and locate

new cons using the global indices of
butterfly block face (not domains).

Butterfly face

Non-butterfly face

proc GetBlkEdgeCons {blk face1 face2} {
 set dom_1 [lindex [gg::blkGetFace $blk $face1] 0]
 set dom_2 [lindex [gg::blkGetFace $blk $face2] 0]
 set face_2_BoundCons {}
 foreach dom $dom_2 {
 set edgeList [gg::domGetEdge $dom]
 foreach edge $edgeList {
 foreach con $edge {
 if { [lsearch $face_2_BoundCons $con] <0 } {
 lappend face_2_BoundCons $con
 }
 }
 }
 }
 set sharingCons {}
 foreach dom $dom_1 {
 set edgeList [gg::domGetEdge $dom]
 foreach edge $edgeList {
 foreach con $edge {
 if { [lsearch $face_2_BoundCons $con] >= 0 } {
 lappend sharingCons $con
 }
 }
 }
 }

 return $sharingCons
}

gg::domJoinBegin $dom_1
 gg::domJoinAddDom $domList
gg::domJoinEnd

Thursday, October 1, 2009

#6. Shared Edge Manager

• Two edge structures:
- Single-con edge: O-rib con, H cons
(multi-segment).

- Multi-con edge: other.

• Multi-con edge manager is
used for sorting connectors
on an edge.

• Initial order: 4 - 1 - 5 - 3 - 2.
• Target order: 5 - 4 - 3 - 2 - 1.
• Iteration numbers: 4

proc edgeConsOrganizer { con1 Hcon con2 edge } {
 set nodeTol [gg::tolNode]
 set H_pta [gg::conGetPt $Hcon -arc 0.0]
 set H_ptb [gg::conGetPt $Hcon -arc 1.0]
 set cor1_pta [gg::conGetPt $con1 -arc 0.0]
 set cor1_ptb [gg::conGetPt $con1 -arc 1.0]
 foreach Hnode [list $H_pta $H_ptb] {
 foreach node [list $cor1_pta $cor1_ptb] {
 if { [GetDist $node $Hnode] > $nodeTol } {
 set edgeNode_1 $node
 }
 }
 }

 set conNum [llength $edge]
 set beginNode $edgeNode_1

for { set i 0 } { $i < $conNum } { incr i 1 } {
 set actualCon [lindex $edge $i]
 set temp [getConByNode $beginNode [lrange $edge $i
end]]

 set rightCon [lindex $temp 0]
 set rightConId [lsearch $edge $rightCon]
 set beginNode [lrange $temp 1 end]
 if { [string equal $actualCon $rightCon] != 1 } {
 set edge [lreplace $edge $i $i $rightCon]
 set edge [lreplace $edge $rightConId $rightConId
$actualCon]
 }
 }

 return $edge
}

Thursday, October 1, 2009

#6. Shared Edge Manager

• Two edge structures:
- Single-con edge: O-rib con, H cons
(multi-segment).

- Multi-con edge: other.

• Multi-con edge manager is
used for sorting connectors
on an edge.

• Initial order: 4 - 1 - 5 - 3 - 2.
• Target order: 5 - 4 - 3 - 2 - 1.
• Iteration numbers: 4

proc edgeConsOrganizer { con1 Hcon con2 edge } {
 set nodeTol [gg::tolNode]
 set H_pta [gg::conGetPt $Hcon -arc 0.0]
 set H_ptb [gg::conGetPt $Hcon -arc 1.0]
 set cor1_pta [gg::conGetPt $con1 -arc 0.0]
 set cor1_ptb [gg::conGetPt $con1 -arc 1.0]
 foreach Hnode [list $H_pta $H_ptb] {
 foreach node [list $cor1_pta $cor1_ptb] {
 if { [GetDist $node $Hnode] > $nodeTol } {
 set edgeNode_1 $node
 }
 }
 }

 set conNum [llength $edge]
 set beginNode $edgeNode_1

for { set i 0 } { $i < $conNum } { incr i 1 } {
 set actualCon [lindex $edge $i]
 set temp [getConByNode $beginNode [lrange $edge $i
end]]

 set rightCon [lindex $temp 0]
 set rightConId [lsearch $edge $rightCon]
 set beginNode [lrange $temp 1 end]
 if { [string equal $actualCon $rightCon] != 1 } {
 set edge [lreplace $edge $i $i $rightCon]
 set edge [lreplace $edge $rightConId $rightConId
$actualCon]
 }
 }

 return $edge
}

Thursday, October 1, 2009

#6. Shared Edge Manager

• Two edge structures:
- Single-con edge: O-rib con, H cons
(multi-segment).

- Multi-con edge: other.

• Multi-con edge manager is
used for sorting connectors
on an edge.

• Initial order: 4 - 1 - 5 - 3 - 2.
• Target order: 5 - 4 - 3 - 2 - 1.
• Iteration numbers: 4

proc edgeConsOrganizer { con1 Hcon con2 edge } {
 set nodeTol [gg::tolNode]
 set H_pta [gg::conGetPt $Hcon -arc 0.0]
 set H_ptb [gg::conGetPt $Hcon -arc 1.0]
 set cor1_pta [gg::conGetPt $con1 -arc 0.0]
 set cor1_ptb [gg::conGetPt $con1 -arc 1.0]
 foreach Hnode [list $H_pta $H_ptb] {
 foreach node [list $cor1_pta $cor1_ptb] {
 if { [GetDist $node $Hnode] > $nodeTol } {
 set edgeNode_1 $node
 }
 }
 }

 set conNum [llength $edge]
 set beginNode $edgeNode_1

for { set i 0 } { $i < $conNum } { incr i 1 } {
 set actualCon [lindex $edge $i]
 set temp [getConByNode $beginNode [lrange $edge $i
end]]

 set rightCon [lindex $temp 0]
 set rightConId [lsearch $edge $rightCon]
 set beginNode [lrange $temp 1 end]
 if { [string equal $actualCon $rightCon] != 1 } {
 set edge [lreplace $edge $i $i $rightCon]
 set edge [lreplace $edge $rightConId $rightConId
$actualCon]
 }
 }

 return $edge
}

Thursday, October 1, 2009

Future Work

• Rewrite the script for Pointwise using Glyph 2.0.
• Handle other grid topologies: C-H, L-H and O-grid around

bodies.
• Add custom libraries for specific distributions of O-rib

connectors.
• Allow arbitrary H-domain (non-center) locations to be

defined by users.
• Optimize frequently used components to boost the script

performance.
• Allow user to examine grid before it is saved.
• Improve the user interface using advanced Tk widgets.
• Explore the possibility of parallelizing the script for large

applications.

Thursday, October 1, 2009

