
A computational framework for flood risk assessment in
the Netherlands

A.A. Markus1, W.M.G. Courage2 and M.C.L.M. van Mierlo3

1 Deltares1 (unit Deltares Software Centre), Delft, The Netherlands, corresponding author2

2 TNO Built Environment and Geosciences, Delft, The Netherlands
3 Deltares (unit Inland Water Systems), Delft, The Netherlands

Abstract
The safety of dikes in the Netherlands, located in the delta of the rivers Rhine, Meuse and
Scheldt, has been the subject of debate for more than ten years. The safety (or flood risk) of a
particular area may depend on the safety of other areas. This is referred to as effects of river
system behaviour on flood risk (quantified as the estimated number of casualties and
economic damage). In the Netherlands, such effects are found to be important for the
understanding and evaluation of flood risks.

A computational framework was developed to assess these effects. One component in this
system selects reasonable dike strength parameters (based on the measured strength
parameters and their uncertainty) and flow conditions via a Monte Carlo simulation. A second
computes maps of the water level and flow velocities in the study area as a consequence of a
dike breach. The third and final component uses these maps and maps of the population
density and economic activities to estimate the potential number of casualties and the
economic damage.

Flood risk is in and by itself a probabilistic problem: it depends on stochastic parameters such
as the actual hydraulic load (the flood event) and the strength of dike sections, which is
known only approximately. To handle this aspect, we used a Monte Carlo method to select 81
computations for which dike breaches would occur given the hydraulic and strength
characteristics, out of a total of seven million. Preparing the input data, running the various
computations and getting the final results was automated using Tcl scripts as much as
possible. The hydraulic computations would last several days and were conducted in parallel
on a Linux cluster to keep the time required within reasonable limits.

Though this complex system was set up ad hoc, we can describe it more formally as a
tuplespace, each computational step for each of the 81 computations thus is represented as a
unique tuple, a combination of job ID and status. Within the Linux cluster each processor was
assigned one such tuple, so that the next step could be carried. The tuplespace paradigm
allows one to set up arbitrarily complex systems or to improve certain aspects of such
systems.

1 The Deltares Institute was formed in 2008 from two independent institutes and parts from two others. One of
these institutes was WL | Delft Hydraulics.
2 E-mail: arjen.markus@deltares.nl

43

1. Flood risks in the Netherlands
Most rivers in the Netherlands are surrounded by dikes to prevent the low-lying land from
flooding. For the past ten or fifteen years, the safety of these dikes has been the subject of
political and technical debate: are the dikes high and strong enough? Should we widen the
area between the dikes so that there is more room for the river water, thus lowering the water
levels and therefore the risk of flooding? It has also become clear that the traditional approach
to assessing the risk, looking at the water levels in the river bed and determining whether it
does or does not exceed the dikes’ crests is insufficient: if a dike breaks, the water will flow
onto the surrounding land, thereby lowering the river levels downstream, but increasing the
water level at the land side of the dikes elsewhere, undermining their strength, as the water
flows into other (smaller) rivers, increasing the local river level. The nett result can be both
positive and negative – these effects are collectively known as effects of river system
behaviour on flood risk. The increase in river levels can be up to 1 m, while the (beneficial)
decrease is limited to 10 cm (cf. Van Mierlo et al., 2007).

The area considered in this study contains the two major rivers in the Netherlands: the Rhine
and the Meuse (figures 1 and 2). Their branches enclose a large, agricultural region and run
along two major cities, Arnhem and Nijmegen. The total population is circa two million
people. All in all there are 11 dike rings (an area protected against floods by dikes and higher
grounds).

Figure 1. Geography of the area

44

Figure 2. The two major rivers Rhine and Meuse in the study area

The study we present here has the purpose to show:

 How effects of river system behaviour can be evaluated in a practical way
 How the risk of flooding in a such an area can be estimated, not only the chance that a

dike breach occurs, but also the consequences in terms of economic damage and
potential loss of lives.

The results of the risk assessment using the computational framework described in this paper
have been presented elsewhere (cf. Van Mierlo et al. 2008). This paper focuses on the
practical aspects of the computations:

 Section 2 describes what components can be distinguished in the modelling of the
river system and the consequences of a flood.

 Section 3 describes the computational framework and its practical implementation
using PCs and a Linux cluster.

 In section 4 we present a more formal description of the system in terms of a
tuplespace. The purpose is to highlight the underlying generic structure, and to show
how similar systems could be designed or described.

 Section 5 contains a few observations about the framework: what lessons did we
learn?

 Related work is discussed in section 6.
 Finally, section 7 summarises the study.

2. Components in the analysis

To analyse the consequences of a dike breach in the study area we set up a system comprising
of the following components:

Dike ring 15 Dike ring D
ik
e
ri
n

Nederrijn-Lek
Dike ring 47

IJssel

Dike ring Dike ring Pan. Kanaal
Dike ring

Dike ring Dike ring 41 Dike ring

Dueffelt polder

Waal

Rhine

Closed Meuse

Dike ring

Dike ring 38

Dike ring

Dike ring
Dike ring

Dike ring
Dike ring 36-

Meuse

Primary flood protection work, category a (protects so-called dikering ares
Primary flood protection work, category b (connects dikering

Considered dike breach

Dike ring 49

45

Component 1: Determination of hydraulic loads without considering effects of river system
behaviour

Initially, hydrodynamic calculations are carried out for the chosen geographical model,
assuming absence of river system behaviour effects. That is, the hydraulic loads on the dikes
are computed assuming that the entire flood wave passes through the system without any dike
failure. These computations are carried out for a range of peak discharges at the upstream
boundary of the system using the SOBEK modelling system. The results are stored in a
hydraulic data base.

The numerical and hydrodynamic aspects of this modelling system are described in detail by
Dhondia and Stelling (2004). It belongs in fact to a class of hydrodynamic models that
emphasizes particular simplifications to the equations, so that a more efficient computation is
possible (cf. Sulis, 2009).

Component 2: A representative set of Monte Carlo realisations, conditional upon failure

The general expression for a flood risk R for a certain time interval (0,t) is given by:

 R = E(D) = xd)x(f)x(D∫ (1)

Where

x the vector with all the stochastic parameters
f(x) is the joint probability distribution function of x.
D(x) is the capitalised value of the damage in (0,t)
E(..) is "expected value"

Elements of the vector x which play a role in the problem are: the river discharge, the wind
speed, the sea level, soil properties, dike lining, emergency measures, hydraulic roughness of
inundated areas, behaviour of secondary dams, etc. These quantities are defined for every
point in time in (0,t) and for every point in space.

The integral (1) can be evaluated using a Monte Carlo procedure. In such a calculation a set of
random variables x is generated and the series of events that takes place in the flood area, are
determined. This is a complex but fully deterministic analysis. All the water levels, the waves,
the dike strengths etc. in the entire area are known for the period under consideration. If the
combination x leads to an initiation of flooding somewhere in the area, all consequences of
this event for the rest of the area can be considered.

At selected potential breach locations reliability analyses per section are carried out using
Crude Monte Carlo runs steered by the Prob2B program (cf. Courage et al.). The realizations
comprise properties of the dikes regarding the considered failure mechanisms as well as peak
discharges at the upstream boundary of the geographical model. The load on the analyzed
dike sections are interpolated using the hydraulic database from the first component. Loads
and resistances are compared using performance functions for selected failure mechanisms.

The results of this step is a representative set of realizations conditional upon failure (at least
one dike section fails) and the complementary set of realizations, in which no failure and

46

hence no flood damage occurs. If there is a failure, all data will be stored for the third
component. The data consist of:

 Discharge time functions of the rivers Rhine and Meuse
 Strength properties for all potential breach locations
 Breach properties, including possible random quantities
 The location of the failure
 The failure mechanism

Component 3: Hydrodynamic calculations, allowing for effects of system behaviour

In this part the hydrodynamic consequences (i.e. determination of the flooding pattern)
including the effects of dike failures and overflow of dikes are determined for the
representative set of realisations obtained from component 2. This was done by means of
SOBEK computations.

The entire region is schematised as a two-dimensional square grid with grid cell sizes of
100 m. The computational cycle consists of the following steps:

 Propagation of the river water via the one-dimensional network
 Evaluation via the so-called RTC module (RTC is the abbreviation of “real-time

control”) of all the relevant failure mechanisms as well as breach development
 Propagation of the river water through the two-dimensional grid when a breach has

occurred according to the second step

More specifically, a local dike breach is modelled as a 1D branch, which is connected to 2D
grid cells, respectively located at the river side and at the dike ring side of a dike breach
location. The 1D branch accommodates a weir, which is lowered and broadened in
accordance with the applied Verheij and Van der Knaap (2002) breach growth formula.
Hence, dike breaches can only occur at “1D dike breach branches”, while “2D river dike grid
cells” cannot fail but are overtopped as soon as river levels exceed local crest levels. Details
can be found in Van Mierlo et al. (2008).

47

Figure 3. Typical result of the flow computation – various dike rings are flooded (Maximum flow rate for the
Rhine is 18,900 m3/s and for the Meuse 4,300 m3/s.)

The main output of the hydrodynamic model is the flood pattern of each scenario
(cf. Figure 3). For each 2D grid cell, SOBEK provides its maximum water depth, its
maximum flow velocity and the speed at which water levels rise. This output data is used for
determining the flood consequence (i.e. damage and victims) of each scenario.

Component 4: Determination of flood consequence (damage & victims)

Flood consequence is determined for the representative set of realizations conditional upon
failure. More precisely, the direct economic damage as well as the expected number of human
casualties is computed with the HIS-SSM program using the flooding patterns determined in
the previous component as main input (cf. Huizinga et al., 2004).

No damage and no victims are assumed for the set of Monte Carlo realizations, in which no
dike failure occurred (e.g. the complementary set of realizations).

Component 5: Determination of Flood Risk

Using the results from the previous steps we can determine the risk:

R = E(D | F) P(F) (2)

D is the damage for an arbitrary scenario, P(F) is the system failure probability, which follows
from the reliability analysis and E(D | F) is the average damage.

3. The computational framework
The various components exist as separate programs on different computers, as they were
developed as standalone applications by different groups: PCs in two different locations and a
Linux cluster, consisting of some 75 nodes with a total of 150 CPUs. For this project the

48

programs were made to cooperate using ad hoc methods, but little or no adaptation of the
programs themselves was necessary (cf. Figure 4).

Prob2B

XML-file

Preprocessing Scenarios

SOBEK SOBEK

Results HIS-SSM Analysis

Controlled by scheduler

Figure 4. Overview of the programs in the framework

The Monte Carlo program to select the dike strength parameters and the flow conditions was
developed for the purposes of this and similar projects, but we chose the XML format as the
means to transfer the selected sets to the next step.

XML proved to be an easy-to-use format, as it fitted the structure of the information very
well: within each scenario we had data for the floods, characterised by the maximum flow rate
per river and the time difference between the occurrences of the maxima and sets of strength
parameters per dike breach location. Each parameter is uniquely identified by its XML tag, so
that there could be no mistake which is which. The Monte Carlo program was developed at a
different location (the TNO offices) than the location where the hydraulic computations were
to be done (the Deltares), so an unambiguous format like XML is very attractive.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Set-up of XML files for defining the scenarios to be computed by SOBEK -->
<proboxToSobek>
 <scenario id="dr41run4">
 <boundary id="RijnafvoerLobith" type="1">
 <maxDischarge>18534.00374491226</maxDischarge>
 <floodWaveShape>50</floodWaveShape
 <delayPeakMeuse>0</delayPeakMeuse>
 </boundary>
 <boundary id="MaasafvoerVierlingsbeek" type="1">
 <maxDischarge>3693.736532262028</maxDischarge>
 <floodWaveShape>50</floodWaveShape>
 <delayPeakMeuse>0</delayPeakMeuse>

49

 </boundary>
 <dikeBreach id="Dr41L7">
 <evaluateBreaching>3</evaluateBreaching>
 <d_aquifer>14.143837723240722</d_aquifer>
 <l_piping>70.52933625966438</l_piping>
 <d_topLayer>1.8176598219403994</d_topLayer>
 <h_hinterDefault>7.988899434135852</h_hinterDefault>
 <gamma_sat>18.098665835608376</gamma_sat>
 …
 <T0>0.1</T0>
 <uc>0.2</uc>
 <v1>0.2</v1>
 <Tp>3.0</Tp>
 </dikeBreach>
 …
 </scenario>
 <scenario id=”dr41run5>
 …
 </scenario>
</proboxToSobek>

Figure 4. Fragment of the XML files used to transfer the scenario information.

The hydraulic computations were done in two steps. First the input was processed on a PC
(parts of the hydraulic modelling system have been written in Visual Basic and it was not
feasible to convert these for a Linux environment) and then the resulting preprocessed input
files were copied to a network disk:

 The difference between each scenario consists of the upstream boundary conditions of
the rivers Rhine and Meuse, the computational period and the dike strength
parameters.

 We used a Tcl program (cf. Welch et al. 2005) to read the XML file containing the
scenario details, prepare the timeseries describing the upstream boundary conditions,
fill in the data in the input files and copy everything into a new directory on the
network disk.

Using Tcl made these tasks very easy to implement (see also the appendix):

 The clock format command was of great use to manipulate the date and time strings
required for the timeseries.

 Via the file command and its subcommands it is easy to create and copy directories
and files.

 The string map command was used to fill in the timeseries (once constructed as a
string with the proper format) in the input file, as shown in the code fragment below:

main --
Select the flood wave in question, construct the timeseries and
insert into the boundary.dat file
#

set datafile [lindex $argv 0]
set rate [lindex $argv 1]
set template [lindex $argv 2]
set key [lindex $argv 3]
set reftime [lindex $argv 4]
set delay [lindex $argv 5]
set expand [lindex $argv 6]
set output [lindex $argv 7]

#
Get the water levels as function of time for each maximum flow rate
#
source [file join [file dirname $argv0] .. templates floodwaves.data.$datafile]

#
Construct the actual timeseries from that information

50

#
set sobekseries [constructTimeseries $reftime $delay $floodwaves($rate,data)]

#
Fill it in in the file with boundary conditions – replace the right keyword
#
set infile [open $template]
set contents [string map [list $key $sobekseries] [read $infile]]
close $infile
set outfile [open $output w]
puts -nonewline $outfile $contents
close $outfile

We took care of reading the XML file using the tDOM extension which renders the XML file
as a tree of data (cf. J. Löwer, 2000). Writing an XML file is easy, reading it is more
complicated. Fortunately there are many tools available for that in almost any programming
language.

On the Linux cluster another Tcl program was run automatically every ten minutes via the
cron daemon. This program monitored the progress of the computations:

 If there was a new directory with the input for a new computation and we don’t have
too many jobs running already, it schedules the computation. (We wanted to avoid
filling up the entire cluster, as it is used by others as well and our computations took
several days each). To mark the fact that it is scheduled, a file with the name
“scheduled” is created. This has two purposes:

o Mark the directory/computation as being scheduled
o Monitor how long a job is scheduled (by looking at the creation time of the

file)
 If a computation has started running, the shell script that starts it creates a file

“running” – the difference in creation time between this file and the file “scheduled” is
the time the job was scheduled but not running. When there are many jobs running,
there may not be a free slot for the job, so this was an indication of the performance of
the cluster.

 When the computation was completed or the computational program stopped for some
other reason, the shell script creates a file “done”. This allows us to monitor the run-
time of the computations.

 The Tcl program checks each finished computation: sometimes the computation can
become unstable or some other numerical problem occurs and then the hydraulic
modelling program may stop before completion. By examining one of the output files
from this program, it determines whether the computation was successful or not (to
mark this fact, it creates yet another file “analysed”).

The one-but-last step in the sequence of programs is to analyse the results of the hydraulic
computation to estimate the potential number of casualties and the economic damage. To this
end, a third Tcl program is used, running on PC: it examines the directories containing the
successfully completed computations, copies various files from the network disk to the local
work directory, and runs the HIS-SSM program. Then the directory is marked with yet
another file, “his-ssm-done”.

Each computational step produces detailed information of which only a part is required in the
subsequent step. For the analysis of the collection of computations the results are condensed
into:

 The potential number of casualties and economic damage per subregion
 An overview of the dike breach characteristics:

51

 Did failure occur due to loads from the river or dike ring side?
 What failure mechanism was responsible?
 Time of the failure
 Maximum breach width
 Maximum discharge through the dike breach

Most of these steps are highly automated, using dedicated Tcl programs and cron tasks on the
Linux cluster for scheduling, but the configuration files for the schematisation of a particular
region requires human action: The input files contain information on the hydraulic boundary
conditions, location of potential breaches, considered failure mechanisms and associated
strengh parameters as well as the delineation of subareas for which the flood risk should be
determined. The automatic procedures rely on keywords in the modified input files: this
modification must be done manually and checking the correctness is essential, as otherwise
the computations will be useless.

4. A formal view
As we described in the previous section, the analysis consists of various steps and even a
single hydraulic computation goes through a sequence of phases. Each step and each phase is
treated by a different program. We can describe the transition from one step to the next by
means of a tuplespace (cf. Gelernter, 1985, Carriero, 1994).

Tuplespaces are a remarkably versatile yet simple client-server concept. They consist of sets
of ordered collections of information, called tuples, and three basic operations, viewed from
the client:

 out: the client puts a new tuple in the server’s database.
 in: the client selects a tuple from the database that matches a certain pattern. The tuple

remains in the database.
 read: like the in operation, but the tuple is removed from the database.

In our system each individual computational step can be identified by the following tuple:

 The job-ID
 The state of the computation

The job-ID identifies the precise input data and results:
Inputs:

 The set of dike strength parameters and flow conditions (different for each scenario)
 The input describing the model area (fixed)

Outputs:
 The hydraulic results
 The estimates of casualties and economic damage

In terms of tuplespaces, each individual computation can be regarded as a tuple of these two
elements (the inputs and outputs are not used for the selection) and the various programs read
tuples from the database and produce new tuples. The table below describes all the steps
involved:

Program/step Operation Tuple/pattern
MC-program produces a
scenario

Out Scenario given, state: new

52

Preparation of hydraulic
computation

Read Select a tuple with pattern “state=new”

Preparation of hydraulic
computation

Out Scenario given, fixed input given, state: ready

Scheduling hydraulic
computation

Read Select a tuple with pattern “state=ready”

Scheduling hydraulic
computation

Out Scenario given, fixed input given, state:
scheduled

Deciding to schedule a
new hydraulic
computation

In Select all scenarios with pattern
“state=running”

Cluster scheduler Read Select a tuple with pattern “state=scheduled”
Cluster scheduler Out Scenario given, fixed input given, state:

running
Hydraulic program
started

Read Select a tuple with pattern “state=scheduled”

Hydraulic program
finished

Out Scenario given, fixed input given, hydraulic
results available, state: done

Analysing hydraulic
result

Read Select a tuple with pattern “state=done”

Analysing hydraulic
result

Out

Or: Out

Scenario given, fixed input given, hydraulic
results available, state: successful

Scenario given, fixed input given, no useful
hydraulic results, state: crashed

Estimating casualties
and damage

Read Select a tuple with pattern “state=successful”

Estimating casualties
and damage

Out Scenario given, fixed input given, hydraulic
results available, estimates available, state:
complete

MC-program analysing Read Select a tuple with pattern “state=complete”

The various computational states a scenario has to go through are more or less sequential, but
the programs that are responsible for each of these stages can work in parallel: there is no
need to fully compute each scenario from the beginning to the end, before starting another
one. But it is important that only one program at a time handles a particular scenario, hence
the read operations: it takes the scenario out of the server database and only when the
program is finished, is it put back, with a different state. By selecting only a tuple whose state
matches a particular pattern, we ensure that the computations are performed in the right order.

In a more complex system the state that results in a particular step may vary, guiding the
further steps. In our case, there is one somewhat trivial occasion for this: the hydraulic
computation could be unsuccessful – the state crashed – the flow over a dike breach might
induce very large flow velocities, resulting in numerical instabilities, or there was a
hardware/network failure so that the computation could not complete.

Such events required that we investigate the reasons for the failure: a hardware failure meant
re-scheduling the computation, whereas a numerical problem has to be solved in a different
way.

53

While normally one thinks of a dedicated program to function as a server, the network disk
served very well for this purpose. By keeping the files for the scenarios in separate directories
we created in fact a simple way to store the tuples and have them available for each client
(except for the MC-program, as that did not run on the same network):

 All technical problems of ACID-proof database management systems are solved by
the file server responsible for the network disk.

 The state of the computation is represented by the presence of certain files and no
more than that. The creation time of these files could in fact be used to monitor the
performance of the system.

As the run-time of each hydraulic computation was monitored, we looked into the relationship
between the maximum flow rate, which is also a measure of the period that is to be simulated,
and the run-time (cf. Figure 6). Some computations did not exhibit the expected dike breaches
(but the dikes would overflow without breaking) and one question was whether that
influenced the run-time. The graph, however, does not reveal any obvious differences
between these two groups of computations, showing that the occurrence of a dike breach in
the computation has no significant influence on the performance.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0.0 5000.0 10000.0 15000.0 20000.0 25000.0 30000.0

Dike breach
No dike breach

Maximum flow rate Rhine (m3/s)

Run time (h)

Figure 6. Time required for a computation as function of the maximum flow rate for the Rhine

5. Lessons learned
An automated framework like the one described here requires more “nurturing” than one
might anticipate: This is due to:

 the length of the individual computations: a lot can happen in a few days, like a
temporary network failure, even though the machines comprising the cluster and the
cluster itself are very reliable.

 the number of computations: you simply do not want to check each input file
manually, after all, that is one of the things the automation is for.

54

 The automation itself: preparing the input files for the computations should be a
smooth process and once automated, it is. Problems arise when you conclude that
something has to be changed.

To elaborate the last point: in our case we wanted a series of computations with an alternative,
smaller, model area. Because several months had passed, the details of which files were used
in which directory were blurred. It was therefore very easy to forget to update one or two of
the basic input files, leading to erroneous computations. The procedure to create the input sets
should not only be automatic, it should also be reproducible with different bases of input
data.

While it may seem an open door, it is vital that all programs involved have a “batch mode”:
several of the programs we used were developed for interactive use on Windows, and
therefore displayed a graphical user-interface, even if the only action the user can take when
the program is running is to stop it. Such GUIs need not hinder automation, but they should
run in a mode that requires no interaction from the user at all.

As the computations each took several days, being able to monitor the progress was another
important aspect:

 To be able to estimate the time left
 To check if the computation produces reasonable results

Sometimes the computations did not show any dike breachs contrary to our expectations. By
examining the intermediate results we were able to identify the cause – slight differences in
the geometrical data to select the computational parameters in the Monte Carlo program and
the data used in the hydraulic program.

All in all the most important lesson is:

Make sure that you can check exactly what input was used for a computation, that you
can check the processing steps and that you can explain the results.

This is nothing new, but with a large number of computations and their respective sets of
input and output data, generated with as little human action as possible, it is all the more
important.

6. Related work
Controlling large sets of computations has received quite some attention in the literature, for
instance in general scientific settings, where very large computations are distributed over
multiple computers, colloquially known as GRID computing. But also on a smaller scale, in
interactive hydraulic and hydrological modelling, the use of a set of computers for managing a
set of computations is being considered. Sulis (2009) presents an interactive system for
determining the optimal rules for reservoir management using a GRID environment.

Prodan (2007) describes a generic system called ASKALON where the entire workflow (that
is: the set of input data, the various steps in the computation and the set of output data, as well
as the relation between these) is analysed and scheduled in such a way that optimal use is
made of the available resources.

55

Paramount to the approach he describes is that the various steps are kept under tight control of
the services that schedule the various computational programs. Prodan presents a formal
model for this system. This way complex, hierarchical, workflows, containing iterations and
decisions based on the outcome of computational steps, can be handled. The workflows are
first converted into directed acyclic graphs. Then each activity can be scheduled and
monitored. If necessary, the converted workflow or parts thereof can be restructured or
rescheduled.

To be able to effectively predict the performance the system also uses a training phase during
which the execution times of the activities are measured.

When comparing Prodan’s system to the tuplespace approach presented here, we can see that
the current system does not involve iterations and only one decision (whether a particular
computation has succeeded or not and what to do when it failed). The workflows are therefore
much simpler. This, however, is by no means a limitation of the tuplespace model. Suppose,
that the complete computation involves some decision – if a dike is going to break under the
given circumstances, we can divert some of the water to another river branch, reducing the
pressure on the dike. Of course we do not want to divert too much water, as the dikes along
the other branch might then fail. This means the workflow involves a loop with an uncertain
number of iterations – we can only estimate the amount of water that should be diverted by
trial and error.

The tuplespace model allows us to reschedule this computation:

 After the computation, a separate program examines the results, concludes that some
water must be diverted.

 The input is adjusted to reflect this diversion
 The file “done” is deleted from the working directory, so that the scheduling script

will reschedule the computation.

This process can be repeated indefinitely, with no particular complications on the scheduling
script. In a similar way other decisions can be arranged for.

An entirely different aspect of managing these computations is the subject of an article by
Balis et al. (2008). They present a formal framework for monitoring the activities in a
workflow that are being run on geographically distributed computers. They contrast this
situation with the situation of running programs on a cluster of computers in a single location.
The purpose of their GEMINI monitoring system is to gather useful information about the
progress of the computations and to use that for improving the performance. The practical
problems of gathering this information in the loosely coupled systems they target are much
larger than in the computing cluster that we used. The use of locally created files to pinpoint
important events in the workflow seems an adequate and simple alternative, though in this
study it was set up ad hoc. Nevertheless, the possibility to monitor the progress of these
computations is important in any computing environment.

7. Conclusion
The framework we described in this paper, is a collection of pre-existing modelling systems
and auxiliary programs developed for just this framework. Combining these tools led to a
practical system by which we have been able to assess the risk of flooding in a part of the
Netherlands, but it can be applied to other river basins as well. The fact that it is a loose
collection of programs, where communication occurs via files on disk and prescribed

56

directory structures, makes it relatively easy to set up and it makes it relatively easy to check
what is happening. Using external files for communication between programs often means an
impact on performance, but that was no issue in this case.3

This is by far the greatest lesson to be learned: the components of such a system must readily
allow the input and output to be inspected. If somewhere in the system, either the results or
the input is obscure, it is all too easy for errors to propagate. It is also paramount that the steps
in the computation are repeatable, because at any point you may make a mistake, no matter
how careful you are or one of the computers you use will develop a disk or network problem.

That is also the advantage of the use of pre-existing components that you can trust and
regarding the system as a tuplespace: individual tasks with persistent data files that describe
them, so that you can restart the whole computation or a part of it when the need arises.

References
Balis, B., Bubak, M., �abno, B. (2008)
 Monitoring of Grid scientific workflows,
 Scientific Programming, Vol 16 (2008), pp 205-216

Carriero, N.J., Gelernter D., Mattson T.G, Sherman A.H. (1994)
 The Linda alternative to message-passing systems
 Parallel Computing, Vol 20 (1994), pp. 633-655

Courage, W.M.G., et al, 2007

Prob2BTM: Installation and Getting Started,
manual. TNO report 2007-D-R0887, TNO Built Environment and Geosciences
See also: Prob2B on www.tno.nl

Dhondia, J.F. and Stelling, G.S., 2004,

Sobek 1D-2D integrated hydraulic model for flood simulation – its capabilities
and features explained,
in sixth International Conference on Hydroinformatics, Singapore,
Liong Phoon & Babovic (eds),
World Scientific Publishing Compagny, ISBN 981-238-787-0.

Gelernter, D., 1985
 Generative communication in Linda,

ACM Transactions on Programming Languages and Systems, volume 7, number 1,
January 1985
See also: http://en.wikipedia.org/wiki/Tuple_space for more information

Huizinga, H.J. et al., 2004,

HIS-Schade en Slachtoffermodule (in Dutch),
version 2.1, manual. DWW-2005-004. RWS Dienst Wegen Waterbouwkunde.

Hunter, N.M., Bates, P.D., Hewitt, M.S. and Wilson M.D. (2007)
 Simple spatially-distributed models for predicting flood inundation: A review,

3 If the issue does arise, other techniques are available, such as MPI, but it makes tracing errors more difficult.

57

 Geomorphology, Vol 90 (2007), pp 208-225

Löwer, J., 2000
 tDOM – A fast XML/DOM/XPath package for Tcl written in C,
 Presented at the First European Tclers’ Meeting, Hamburg, 2000

http://www.tdom.org/documents/tDOM3.pdf

Van Mierlo, M.C.L.M. et al, 2007,

Assessment of floods risk accounting for River System Behaviour,
Intl J. River Basin Management Vol 5, No 2 (2007), pp 93-104.

Van Mierlo, M.C.L.M. Schweckendiek, T. and Courage W.M.G., 2008,

Importance of River System Behaviour in Assessing Flood Risk,
Flood Risk Management: Research and Practice – Samuels et al. (eds),
2009, Taylor & Francis Group, London, ISBN 978-0-415-48507-4

Prodan, R. (2007)
 Specification and runtime workflow support in the ASKALON Grid
 Environment,
 Scientific Programming, Vol 15 (2007), pp. 193-211

Sulis, A. (2009)
 GRID coputing approach for multireservoir operating rules with uncertainty,
 Environmental Modelling & Software, Vol 24 (2009), pp 859-864

Verheij, H.J. and Van der Knaap, F.C.M., 2002,

Modification Breach Growth Model in HIS-OM,
WL|Delft Hydraulics, Q3299 (in Dutch).

Welch,B., K. Jones and J. Hobbs (2003)
 Practical Programming in Tcl and Tk,
 Prentice Hall PTR, 4th Edition

ISBN: 0-13-038560-3, June, 2003

Appendix
This appendix demonstrates some details in the framework: the editing of the input files and
the scheduling of the various jobs.

Preparing the input files
The boundary conditions for typical flood waves are available for each maximum flow rate at
steps of 100 m3/s for a wide range of flow rates. In the program the appropriate series is
selected based on the maximum flow rates for Rhine and Meuse from the Monte Carlo
simulation in component 2. This flow rate is specified as a list of times (in days since the start
of the wave) and the flow rate at that moment. The following simplified procedure produces
the timeseries in the format that is expected:

proc constructTimeseries {begin series} {
 set sobekseries {}
 set begintime [clock scan $begin]
 set offset [lindex $series 0]

58

 foreach {time rate} $series {
 set seconds [expr {int(86400*($time-$offset))}]
 set datetime [expr {$begintime+$seconds}]
 set sobektime [clock format $datetime -format "'%Y/%m/%d;%H:%M:%S'"]
 lappend sobekseries "$sobektime $rate <"
 }

 # Trick: using a list suppresses an end-of-line at the end!
 return [join $sobekseries \n]
}

The result is then inserted into the input file using the [string map] command. The variable
key has the value “@RIJN@” or “@MAAS@”. These strings are found in the template file and
are replaced by the timeseries.

 #
 # Construct the actual timeseries
 #
 set sobekseries [constructTimeseries $reftime $delay $floodwaves($rate,data)]

 #
 # Fill it in in the file with boundary conditions – replace the right keyword
 #
 set infile [open $template]
 set contents [string map [list $key $sobekseries] [read $infile]]
 close $infile
 set outfile [open $output w]
 puts -nonewline $outfile $contents
 close $outfile

The result:

Template:

After replacing the keyword “@RIJN@”:

D2LI id 'l_RijnafvoerLobith' ty 1 q_ dt 1 0 0
TBLE
@RIJN@
tble d2li

D2LI id 'l_RijnafvoerLobith' ty 1 q_ dt 1 0 0
TBLE
'2000/01/01;00:00:00' 1000 <
'2000/01/01;07:02:21' 1080 <
'2000/01/01;17:09:10' 1330 <
…
'2000/01/12;12:56:00' 7080 <
'2000/01/13;01:09:24' 7440 <
'2000/01/13;13:06:31' 7800 <
'2000/01/14;01:29:34' 8160 <
'2000/01/14;22:48:08' 8660 <
'2000/01/15;11:20:15' 8900 <
'2000/01/16;06:00:25' 8660 <
'2000/01/17;03:08:03' 8160 <
'2000/01/17;14:27:10' 7800 <
'2000/01/18;04:39:12' 7440 <
'2000/01/18;19:35:54' 7080 <
'2000/01/19;08:53:13' 6830 <
….
'2000/02/02;23:32:29' 1580 <
'2000/02/03;18:41:02' 1330 <
'2000/02/04;09:51:24' 1080 <
'2000/02/04;20:25:00' 1000 <
tble d2li
D2LI id 'l_7' ty 1 q_ dw 1 0 0

Scheduling the jobs
The scheduling program scans the directory (using the [glob] command) holding all
subdirectories containing the scenarios for computations that have not run yet and have not
been scheduled yet. The criterium is fairly simple: there should not be a file that indicates the
job is scheduled, is currently running or has already been done.

59

If such a subdirectory is found and there are not too many computations running already, it is
added to the cluster’s work queue. If on the other hand a subdirectory is found with a file
“done”, the program checks if it has already been analysed. The analysis is limited to the
check whether it has finished normally.

main --
Loop over the subdirectories and see if there is a subdirectory
holding an interesting job
#
set env(SGE_CELL) …
… and other environment variables …

foreach d [glob -nocomplain -type d *] {
 if { [file exists [file join $d CMTWORK]] } {
 if { ! [file exists [file join $d done]] } {
 if { ! [file exists [file join $d running]] } {
 if { ! [file exists [file join $d scheduled]] } {
 if { [canSchedule] } {
 scheduleJob $d
 }
 }
 }
 } elseif { ! [file exists [file join $d analysed]] } {
 analyseJob $d
 }
 }
}

60

