
Flood risk assessmentFlood risk assessment

Arjen Markus
Deltares
(previous name: WL | delft hydraulics)

The problem: river floods

• Most rivers in the Netherlands surrounded by dikes
• Dike breaches are a hazard to be dealt with
• Dikes need to be heigh enough and strong enough

This project: comprehensive approach

Study area (1)

Study area (2)

• Surrounded by Rhine and Meuse
• Approximately 2 million people
• Several major cities
• Agriculture important aspect

Study area (3)

Dike ring 41 Dike ring 42

Dike ring 16 Dike ring 43

Dike ring 40

Dike ring 48

Dik
e

rin
g

49

Dike ring 47

D
ike ring 45

Dike ring 44Dike ring 15

Rhine

IJssel

Nederrijn-Lek

Pan. Kanaal

Waal

Dike ring 41 Dike ring 42

Dike ring 16 Dike ring 43

Dike ring 40

Dike ring 48

Dik
e

rin
g

49

Dike ring 47

D
ike ring 45

Dike ring 44Dike ring 15

Rhine

IJssel

Nederrijn-Lek

Pan. Kanaal

Waal

Dike ring 35 Dike ring 36

Dike ring 36-a

Dike ring 37

Dike ring 37

Dike ring 24

Dike ring 38

Dueffelt polder

Meuse

Rhine

Closed Meuse

Primary flood protection work, category a (protects so-called dikering ares against flooding)

Primary flood protection work, category b (connects dikering areas)

Considered dike breach location

Dike ring 35 Dike ring 36

Dike ring 36-a

Dike ring 37

Dike ring 37

Dike ring 24

Dike ring 38

Dueffelt polder

Meuse

Rhine

Closed Meuse

Primary flood protection work, category a (protects so-called dikering ares against flooding)

Primary flood protection work, category b (connects dikering areas)

Considered dike breach location

River system behaviour

• Dike breach can mean: lower water levels downstream
• But also: pressure from the land side
• Modelling approach:

• Select locations for possible breaches
• Compute the water flow in the rivers and over land
• Estimate casualties and economic damage • Estimate casualties and economic damage

Typical result

Modelling system

Prob2B

XML-file

Preprocessing Scenarios

SOBEK SOBEK

Results HIS-SSM Analysis

Controlled by scheduler

Modelling system: Scenarios

• Monte Carlo simulation: Setting up the scenario
• Floods have stochastic properties: maximum flow rate
• Dikes vary in strength – parameters known approximately only
• Selection:

• Draw parameters for each location
• Relation flow rate – water levels known• Relation flow rate – water levels known
• Estimate: dike breach?

Result: 3 x 100 scenarios (for different sets of potential breach
locations)

Modelling system: Hydrodynamics

• Fine-grained terrain model (100 x 100 m)
• Flood simulated using “standard” curves – known for a range of

maximum flood rates
• Period to simulate: roughly two weeks to three months
• Each simulation takes several days or even weeks to complete

Modelling system: Estimating victims, damage

• Maps of population density and land use
• Maps of water levels and flow velocities from hydrodynamic model
• GIS-based analysis
• Result for each indicated area:

• the number of victims
• Amount of economic damage• Amount of economic damage

Modelling system: Estimate the risk

•Combine the results for all scenarios
•Risk is expected number of victims or amount of damage – so multiply with
probability of occurrence
•Histogram: what is the most likely number of casualties?

Managing the computations

• Different programs run on different sites or computers
• Setting up, starting and checking the computations has to be

automated:
• A set of 300 scenarios
• Computations take too long

Tcl turns out to be almost perfect for the job

Preparing the hydrodynamic computation

• Copying the (fixed) input files for each computation to a separate
directory

• Reading the XML file with flood parameters and dike strength
parameters

• Setting up the timeseries for the flood wave and adjusting various
input files input files

[clock], [string map], [file copy] are the tools here

Interlude: some code

proc constructTimeseries {begin series} {

set sobekseries {}

set begintime [clock scan $begin]

set offset [lindex $series 0]

foreach {time rate} $series {

set seconds [expr {int(86400*($time-$offset))}]

set datetime [expr {$begintime+$seconds}]

set sobektime [clock format $datetime - format \set sobektime [clock format $datetime - format \
"'%Y/%m/%d;%H:%M:%S'"]

lappend sobekseries "$sobektime $rate <"

}

Trick: using a list suppresses an end-of-line at the end!

return [join $sobekseries \n]

}

Running the hydrodynamic program

• Scheduling the jobs on the Linux cluster
• Not too many at a time though (I am not the only user)
• Registering the status:

• Has the job started yet?
• Is it finished? If so, successfully?
• Has it been analysed yet?• Has it been analysed yet?

• Small files with specific names flag that status (“running”, “done”,
“analysed”)

• Script runs via the cron utility – so I keep the system busy

Running the risk estimation program

• Copying the result files from the various directories
• Adapting the input files for the program
• Running it in batch mode (it was originally a GUI only)
• Extracting the relevant information:

set outfile [open "hisssm-samenvatting.txt" w]
set areas {}
foreach file [glob - nocomplain "* - agg.txt"] {foreach file [glob - nocomplain "* - agg.txt"] {

if { $areas == {} } {
set areas [extractAreaDescription $file]
... write header ...

}
set scenid [extractScenarioId $file]
set numbers [extractInformation $file]
puts $outfile "$scenid\t[join $numbers \t]"

}

Lessons learned

• Traceability and monitoring: being able to analyse what went
wrong

• Automate as much as possible: you may need to repeat the
exercise

• Can you run the programs in batchmode?

Formal view: tuplespace

• Fill a database with scenarios (here: the file system)
• Each record (scenario) goes through various stages

– steps in the chain of individual computations
• Ordering between scenarios is irrelevant
• Scenarios contain status information

Formal view: tuplespaces (2)

Each record (scenario) has the following information:
• Scenario ID (directory name containing all the files)
• Status (not started yet, running, finished, analysed)

The scheduler program selects a scenario with the right status and
starts the computational program that belongs to that status.starts the computational program that belongs to that status.

In terms of tuplespaces: a read operation – the record is taken out
of the database.

When the computational program finishes, a new record is written:
an out operation.

Formal view: tuplespaces (3)

In this case the stages of the computation are:
• Preparation: from the XML file to a set of input files
• Computation: flood wave and dike breaches
• Analysis: has the computation succeeded?
• If success, estimate casualties and damage
• If not: identify why not?• If not: identify why not?

The tuplespace apprach means the scheduler program needs to know
nothing of the stage of each scenario. It simply scans the directories.

Formal view: tuplespaces (4)

Compare this to approaches found in literature:
• Formal specification of the computational steps (often via XML)
• The description of the complete computation needs to be

analysed and transformed.
• Loops (iterations) are expanded
• The scheduler program keeps track of the stages of the • The scheduler program keeps track of the stages of the

computation.

A loop in this set-up:
Simply write a record with the same status, until the stop criterium
is fulfilled.

Spin-off

• Setting up a series of computations is useful (to me) in other
projects too.

• For instance: optimising the location of a waste water discharge in
a coastal area

Work in progress:Work in progress:
• Various ways of dealing with a series of computations
• Possibility of calibration, not just selecting an alternative
• Flexibility in defining the variations?

