
Using [incr Tcl] to improve stability of a GUI – A Case Study

Ruchir Agarwal, Prashant Thakre, Manu Goel, Maneesh Agarwal
Mentor Graphics Corporation

{ragarwal | pthakre | mgoel | magarwal}@mentor.com

1.0 Abstract

This paper discusses how a GUI required
handling multiple datasets at the same time
and providing the user with design and
debug information for all the datasets
currently open, was having problems in
switching between different datasets and
different views of a same dataset, due to it
being written primarily in Tcl. The paper
further describes how the GUI is modified
using [incr Tcl] to solve these problems by
benefiting from the object oriented concepts
built in [incr Tcl]. This paper describes how
[incr Tcl] is used by ways of code examples.
The paper finally concludes mentioning the
benefits achieved by this exercise and also
provides recommendations on how to avoid
the pitfalls in using Tcl and how they can be
easily avoided by using [incr Tcl].

2.0 Glossary

Description of terms used in the paper:

Dataset – database having information about
waveform and signal connectivity and
design hierarchy for two views, i.e. RTL
and Netlist
Restricted Dataset – databases having
information about design hierarchy and
waveform only. These datasets do not have
information about signal connectivity and
may support only one view
Wave viewer – widget to view signal
waveforms
Pathbrowser – widget to trace signal
connections (fanin, fanout) in a design

Hierarchy browser – widget to view design
hierarchy of a dataset.
Signal browser – widget to view signals in
the selected instance in the Hierarchy
browser

3.0 Motivation and Problem statement

The primary use of GUI being discussed is
to debug designs in post-process mode.
Typical use mode is to compile the design,
run emulation and generate debug database
for waveforms and design connectivity.
Each such generated debug database is
called a dataset. In case of an error, a
verification engineer can open a dataset and
view the design hierarchy in hierarchy
browser and signal browser, debug by
viewing waveforms in wave viewer, and
browse the connectivity in pathbrowser. The
requirements from the GUI are:
1. provide ability to debug more than one

datasets at the same time
2. pathbrowser is locked to a dataset and

should allow to trace even if its dataset is
not the currently active dataset

3. wave viewer should be able to display
waveforms for signals from different
datasets at the same time

4. hierarchy browser and signal browser
are locked to the currently selected
dataset and should switch the design
information whenever the dataset is
switched or the dataset view is changed.

5. when a dataset is closed, close all the
open widgets attached to it and remove
signals from the wave viewer without
closing it as it is a shared window

23

Unless otherwise stated, the discussion in
this section refers to older implementation
and specific problems associated with it.
The GUI under discussion was written in
Tcl and employs global Tcl associative
arrays to store information about the active
dataset. This global array was used by the
widgets to get information regarding the
active dataset. When the active dataset was
changed, this global array was modified to
reflect the change. The global array had
element for each variable required for a
dataset. So whenever a new feature or task
was to be added for the datasets then a new
element was added in the global array. With
a substantial feature list, this strategy
resulted in a lot of such array elements,
which were not easy to search in the code
and as a result were missed for reset/delete
whenever the dataset was closed. This
problem was aggravated when the support
for restricted datasets was required. For
these datasets certain array element were not
created, so it was also required to check for
the dataset type before accessing such array
elements. In some cases functions were
renamed to provide a constant interface to
the display widgets. This made
understanding the code flow tough. It was
realized with each new task being added, the
GUI became more difficult to manage and
started impacting the overall stability and
quality.

Considering the growing requirements of
new features, and need to maintain a very
robust intelligent GUI which can handle
multiple parallel data-streams seamlessly, it
was decided to rewrite a major portion of the
GUI. This required encapsulating the
implementation in order to force the use of
interface corresponding to each type of
dataset. We decided to use object oriented

programming concepts which lead us to
[incr Tcl].

The following sections will describe the
GUI architecture and how the old
implementation was having problems and
how the new implementation solved these
problems.

As a summary conclusion, the paper also
describes the lessons learnt during this
exercise and provides our recommendations
to Tcl programmers on how to avoid the
problems that we faced.

4.0 GUI Architecture

The GUI comprises of display widget and
dataset sources at the backend (Figure 1).
Each dataset source has two view sources
(or display data formats) – RTL and Netlist.

Figure 1: GUI Architecture

For each dataset loaded in the GUI there is
one unique dataset source with which the
display widget communicates. The display
widget does not know about the view
sources. The communication between the

Displa
y
widge
t

Dataset
Source
1

Dataset
Source
2

RTL
view
server

Netlist
view
server

24

display widgets and view sources is routed
through the dataset sources.

As seen in figure 2, in Workspace pane,
there are various tabs, like v133_v4,
v133_v4_TEV_BENCH, etc. Each of these
tabs corresponds to a dataset. In the figure
the hierarchy browser for dataset v133_v4 is
being shown and the Signals tab in the
Objects pane is showing the signals for the
currently selected instance. The design
hierarchy has two views, RTL and Netlist.
In Figure 2, Netlist view is selected.
Depending on the view selected – RTL or
Netlist, the dataset source sends a request to
the respective server to get the data to be
displayed.

To view the connectivity information the
display widgets like pathbrowser and Wave
viewer also communicate with the view
server through the dataset source.

4.1 Old implementation

This section discusses the old
implementation of the GUI and also
mentions the problems seen and remarks on
how these problems could be solved by
using [incrTcl].
In the old implementation information about
various properties of a dataset were kept in a
global array. Let us call this global array,
g_arr. So for a dataset ds1, and property
prop1, g_arr would have a member
g_arr(ds1,prop1). All property
variables were available in the global scope
and could be created, deleted, read and
written to from any where. There was no
encapsulation. Since the dataset property
variables were available in the global scope,
it gave us license to create and delete them
on the fly. These variables were often
created on the fly with an expression of the
form:

set g_arr($n,prop1) prop_val

Figure 2: GUI showing multiple datasets

25

Notice that the dataset name in the above
variable is referred by a variable $n. Using
variables which were created on the fly and
had dynamic names posed the following
problems which affected product quality. (1)
It was difficult to know if a property
variable had been created or not. So a lot of
“info exists” checks in the code had
to be added. (2) Searching of variable
created for a dataset in the code was difficult.
The only way to know was at runtime using
array names. This resulted in
duplication of information, which was
difficult to track and was dangerous because
there was a high chance that during dataset
switch some of the array members were not
updated. (3) When a dataset was closed,
property variables which were created on the
fly were missed out on deletion. To solve
these problems coding guidelines could be
strictly enforced, but there was no way that
such protections could be in-built in the
system.

Since the view servers provided almost
identical information, so the access
functions had identical signatures.
Depending on the active view, the
corresponding access function was called
from within the dataset source. To avoid
if-else checks at various places in the
dataset sources we clubbed all the access
functions into one for each view and then
used the concept of C function pointers. So
depending on the view the functions were
renamed. The rename and re-rename used to
happen at every view change. So at any
point of time it was difficult to know what
the active function was. Debugging was
tough. A case for polymorphism.

For restricted datasets, some of the
properties were not available, so before
accessing any property we had to add either

a check for the dataset type or info
exists on the property variable. As only
one view was available for restricted
datasets the functioning renaming and re-
renaming was also put under a dataset type
check. This is a case for inheritance.

4.2 New implementation

We understood the weaknesses of the old
implementation and remedial action as
underlined in section 4.1 and resolved these
in the new implementation.

An abstract base class dataset_base
was created for common dataset properties.
The implementation of restricted dataset
and dataset classes handled the differences
by using the concept of inheritance.

Code snippet for the dataset_base class:

itcl::class dataset_base {
 ## logical name for the
dataset
 protected variable d_ds_name
""

 ## path of the dataset
protected variable d_ds_path

""

protected variable d_win_list
[list]

 ## Restrict object creation
 constructor {} {
 # Simulate abstract base
class
 if {[namespace tail [info
class]] eq "dataset_base"} {
 error "Error: can't create
dataset_base objects - abstract
class."
 }
…

26

…

 public method ds_name {} {
 return $d_ds_name
 }
 public method ds_path {} {
 return $d_ds_path
 }
 public method set_ds_name
{name} {
 set d_ds_name $name
 }
 public method set_ds_path
{path} {
 set d_ds_path $path

}

…
…

empty functions which will
be overwritten in the derived
class

public method add_win {win} {
 lappend d_win_list $win
}

public method delete_win {win}
{

 # search and remove the
window from the list

…
…
}

 public method switch_view {view}
{
}

 public method get_prop1 {} {
 return “”
 }
 public method set_prop1 {val} {
 }
 public method get_prop2 {} {
 return “”
 }
 public method set_prop2{val} {
}

...

...

}

Code snippet of the dataset class:

itcl::class dataset {

Figure 3: Class diagram

27

inherit dataset_base

 private variable d_cur_view
 private variable d_prop1
…
…

 public method cur_view {} {
 return $d_cur_view
 }
 public method get_prop1 {} {
 return $d_prop1
 }
 public method set_prop1{val} {
 set d_prop1 val
 }

 public method switch_view {view}
{
 set d_cur_view $view
 }

…
…

}

Code snippet of the restricted dataset class:

itcl::class restricted_dataset {
 inherit dataset_base

 private variable d_prop2

 public method cur_view {} {
 return “rtl”
 }

 public method get_prop2 {} {
 return $d_prop2
 }
 public method set_prop2 {val} {
 set d_prop2 val
 }

…
…

}

As can be seen in the code snippets,
common properties - d_ds_name,
d_ds_path and there set and get functions
are encapsulated in the base class
dataset_base. Dummy implementation
of dataset specific property functions are
also provided in the dataset_base class.
These functions are overridden depending
on the need in the derived classes. For
example, the get and set functions for
property d_prop1 are overridden in
dataset class and the get and set
functions for property d_prop2 are
overridden in restricted_dataset
class.
Functions which are supposed to return a
specific value depending on the dataset type,
like the function for current dataset view
cur_view, have different definitions in the
respective classes.

As can be seen in these code examples the
new object oriented architecture provided us
a way to encapsulate all the properties of the
datasets in the dataset classes. This helped in
setting all the property variables when a
dataset was loaded in the dataset object’s
constructor. And the cleanup was also easy
as it could be easily managed in the
destructor of the dataset object. The
polymorphism and inheritance feature
ensured that tricky issues like function
renaming were automatically taken care off.

5.0 Results

The new GUI makes successful use of
concepts of encapsulation, inheritance, and
polymorphism with help of [incr TCL]. The
new architecture has also reduced the code
base by around 15% compared to earlier
implementation. The new re-architected
GUI is very stable and robust, and that is

28

also evident from field and customer usage.
The incoming bug rate has seen a reduction
of 50% every month, over last few months,
despite the concern that major re-
architecture could introduce new issues.
There are no open issues which are critical
in nature

6.0 Lessons learnt and recommendations

1. Do not use variables with dynamic names
created in the global namespace. Searching
these variables is very difficult.
2. Renaming functions back and forth is
difficult to maintain and debug.
3. Segregate data display logic and data.
Keep the GUI code thin.
4. Contextual menus should be activated-
deactivated by the objects on which these
work instead of having global variables
which are set/reset depending on the active
objects.
5. If windows are attached to different
datasets, then it is better to have the list of
windows with the dataset object instead of a
global list of all open windows. This helps
in closing the windows along with the
closing/destruction of the corresponding
dataset.
6. Code should not rely on state variables

7.0 Bibliography

1. TCL wiki, http://wiki.tcl.tk
2.[incr Widgets] An Object Oriented Mega-
Widget Set, Mark L. Ulferts,
http://incrtcl.sourceforge.net/iwidgets/paper/
paper.html

29

30

