
Too Many Windows 
Ron Wold 

Mentor Graphics Corporation 
8005 SW Boeckman Road 

Wilsonville, OR 97070 
503-685-0878

Abstract 

Over the past 10 years the Modelsim GUI, written in Tcl/Tk, has grown from a simple user interface with three 
panes to an elaborate interface comprised of over 50 distinct windows.  The Modelsim GUI architecture, while 
sufficient at the time of creation, began to crumble under the weight of so many windows.  This paper will explore 
the issues that occurred as the window count grew and describe the approach taken to resolve these issues. 

Keywords 

Tcl/Tk, GUI widgets, window layout, pane widget 

1. Introduction 

Modelsim is an integrated development environment (IDE) used by electronic designers to develop, debug, simulate 
and test electronic designs.  It supports several different hardware description languages (HDLs) - such as VHDL [1] 
and Verilog [2] – each of which employs unique concepts that require unique user interfaces.  As HDL conceptual 
capabilities expanded over the years, the number of unique windows within Modelsim multiplied to accommodate 
those new capabilities.  Modelsim currently contains over 50 different windows.  This large number of windows 
impacts both internal tool development and customer usage. 

2. Menu System & Command Routing 

Consider the following simple Tcl/Tk example application, which has a single window (figure 1).  A window 
developer is tasked with implementing a delete command for this window.  The command will originate from the 
pull down menu item Edit->Delete.

Figure 1 

This feature is simple enough, assuming the menu bar object is “.menubar” and the pulldown menu Edit has 
already been defined, the following line will implement the menu item.   

.menubar.edit add command -label "delete" -command { transcript_delete_cmd } 

The developer must also define the procedure “transcript_delete_cmd”, which performs the actual deletion.  
Next, the developer wishes to enhance the menu item such that it is enabled or disabled based on the state of the 

30



transcript window.  If there is text selected within the transcript window, the delete menu item should be enabled.  If 
nothing is selected, the menu item should be disabled.   

Let’s assume that a procedure called “transcript_something_is_selected” exists and that it returns true if 
there is text selected.  The menu item state can be set using the menu’s post command, which is implemented with 
the following code. 

.menubar.view config -postcommand [code view_postcmd] 

proc view_postcmd { } { 
 If { [transcript_something_is_selected] }{ 

$menu.view entryconfigure "Delete" -state normal 
 } else {  

$menu.view entryconfigure "Delete" -state disable 
 } 
}

Next, let’s add a second window to the application (Figure 2).   

Figure 2 

Assume that both windows must support the delete command and both windows must enable or disable the delete 
menu item based on their selection state.  Also assume that we can determine which window is active by calling the 
procedure ActiveWindow.  This routine will return which window is active and with two windows the possible 
values are Library or Transcript.   

Using the example above, there are two changes necessary to support the addition of the second window.  Both the 
post command and the delete command must be modified to detect which window is active and to make the 
appropriate call.

proc view_postcmd { } { 
 if { [ActiveWindow] eq “transcript” } { 
  # transcript is active 
  If { [transcript_something_is_selected] }{ 

$menu.view entryconfigure "Delete" -state normal 
  } else {  

$menu.view entryconfigure "Delete" -state disable 
  } 
 } else {  

# Library is active 
  If { [library_something_is_selected] }{ 

$menu.view entryconfigure "Delete" -state normal 
  } else {  

$menu.view entryconfigure "Delete" -state disable 
  } 
 } 
}

31



proc delete_cmd {} { 
if { [ActiveWindow] eq “transcript” } { 

  # transcript is active 
  Transcript_delete_cmd 

} else {
# Library is active 
Library_delete_cmd

}
}

As you can see, adding a second window adds complexity to the code.   

This example represents just one menu item in a system with two windows.  But consider a tool with 50 different 
types of windows and multiple pull down menus, each containing several menu items.  Thousands of lines of code 
are required simply to enable and disable pull down menus.   

Modelsim used this basic architecture for several years; but as the window count grew, the code became unruly, was 
prone to bugs, and the effort necessary to implement a new window became increasingly time consuming.   

This issue is not unique to the menus.  Key bindings and toolbar buttons have identical problems.  In fact, any 
command that is directed at the active window has this issue.  The fundamental problem is that code that can initiate 
a command needs the following information:  

1 – Does the active window support the command? 
2 –Is the active window’s state capable of executing the command at this time? 
3- What procedure must be called to execute the command in the active window? 

Coding a command such that it asks these questions for each window is sufficient when there are only a few 
windows, but is a poor technique when the window count grows.  A solution to this issue was found by 
implementing a mechanism where the questions above could be answered without having specific knowledge of the 
active window.  The mechanism is much like a traffic cop; it directs traffic (commands) to various locations 
(windows).  Hence, we labeled the mechanism Vcop.   

Vcop provides general command routing and it is based upon an active window model.  At any given time there is 
one and only one active window.  A user can activate a window by clicking in it.  If a user activates a window, the 
previously active window becomes deactivated.   

Vcop implements two key pieces of functionality.   

1. Given a command, Vcop can ask the active window if the command is supported.  
2. If the command is supported, Vcop can ask the active window to execute the command.   

This architecture is implemented through the registration of a window callback.  The callback performs different 
types of actions and has been coined an action table.   Each window registers their action table with Vcop, and the 
action table must be in the standard form: 

proc an_action_table { window operation args } { … } 

The action table is essentially a switch statement that defines two cases for each command that it supports.  Using 
the Delete example above, a window which supports the delete operation would have these two entries within its 
action table: 

can_delete {
If { [transcript_something_is_selected] } { 
 Return 1 

    }  

32



    Return 0 
   } 

 delete  {
Transcript_delete_cmd

   } 

The “can_delete” determines whether the delete command is currently supported.  This case can be used by 
menu items and toolbars to determine whether they should be enabled or disabled.  The second case, “delete” is
the actual implementation of the delete command. 

The implementation of Vcop and the action table allows a command to be implemented without specific knowledge 
of a window.  Code that can initiate a command asks Vcop whether it is currently a valid operation.  If the command 
is to be executed, it asks Vcop to direct the request to the active window.  Developing a new window no longer 
requires knowledge of, or changes to, all the locations that can initiate a command.    

Figure 3 

In addition to these changes, a new menu system was defined providing a layer above the intrinsic Tk menu creation 
commands.  This layer has knowledge of Vcop, and manages all calls to Vcop for enabling and disabling menu 
items.  Under the new system, a typical menu item is described as: 

AddMenuItem "Delete" $edit_menu delete can_delete 

The argument “delete” is the action entry that should be invoked should the user select this menu item.  The 
argument “can_delete” is the action entry that should be called to determine if the menu item should be enabled 
or disabled.  The menu system controls the menu item states via a menu’s post command.  When the menu is raised, 
all menu items that supplied a “can” action are forwarded to Vcop.  Vcop sends the request to the active window and 
the results are returned to the menu system which enables or disables the menu items.  If a window’s action table 
does not define a can operation, Vcop considers the command to be unsupported for the window and the item is 
disabled.   

Incorporating Vcop and action tables greatly simplified the menu and toolbar code.  The architecture has also 
reduced the knowledge and effort required to create menu items and toolbars.    

Library::Action { 
   … 
   can_delete {…} 
   delete {…}

   … 
}V

co
p

Transcript command 

Menu Item

Toolbar

Transcript::Action
{
   … 
   can_delete {…} 
   delete {…} 
   … 
}

AnotherWindow::Action { 
   … 
   can_delete {…} 
   delete {…}  
   … 
}

33



An additional benefit of this architecture is the ease with which 3rd party windows are incorporated.  Several external 
groups develop windows that are “sourced” into Modelsim at run time.  Prior to these changes, it was virtually 
impossible for a 3rd party window to tie in the existing menus and toolbars.  Under the new architecture, a 3rd party 
window simply defines an action table and registers it with Vcop.   

2.0 Menu Items 

Anyone who has grown familiar with a tool, then upgraded to a newer version of the tool and discovered that many 
of the menu item names or locations have changed understands the importance of menu item stability.  Users learn 
where menu items are in an application. If a menu item’s name or location changes, the user is forced to relearn this 
information.   

“The content of an application’s menubar menus should be stable”, “…commands in menubar 
menus should not be present or absent depending on the application’s state.  To reduce menu 
complexity, deactivate (i.e., gray out) inapplicable commands rather than remove them”[4].   

Two key points made here are: a) the menu picks should not change from release to release, and b) all menu picks 
should be visible, even if they are not applicable to the active window.  In addition to menu stability, menus should 
not grow too large.  A study by Miller found that “eight item menus with a depth of two levels resulted in the fewest 
errors and fastest retrieval of a designated target” [5].   

Historically, when a new window was added to Modelsim, a developer would associate the window’s commands to 
existing menu items that matched.  If one could not be found, a new menu item was added.  As the window count 
grew, Modelsim’s menus grew, violating the rule on menu size.  Rebuilding the menu to display only relevant menu 
items reduced the overall menu size, but this approach violated the menu stability rule.   

Resolution of Modelsim’s menu problems involved multiple tasks.   

Categorizing Commands – It was necessary to change menu terminology so that a single menu item could be 
shared by all windows.  Changing the menu item terminology violated the rule on menu stability. But if done 
properly the menu items would not change in future releases as more windows were added.   

The top level menu names - such as File, Edit and View - define a category of commands.  It was critical that these 
top level menu names were carefully thought out.  They had to be general enough to support all of the current and 
future menu items.  For example, many of Modelsim’s windows used the term “insert”, while others used the term 
“include” or “place”.  We changed the terminology to “add” and incorporated all associated menu items under this 
main menu label.  Eliminating menu names that were similar not only reduced the number of menu items, but also 
reduced menu search time.  For example, if a user wished to “add” something to a window and saw the menu labels 
“include”, “place” and “insert”, they would likely search all of these menus to ensure that they had selected the 
correct item. 

Partially Dynamic Menu Items – As Johnson [4] points out, menu items should not change and they should always 
be visible.  Users expect the “save” menu item to be in the same location within the menu, regardless of what 
window is active.  Through experimentation, we discovered that as long as a menu item’s location remained 
constant, as well as the first word of the menu label, the user would easily find the item.  This is true even if a 
second word to the item was added that more closely defined the operation.  For example, Modelsim had windows 
that used the menu name “write”, such as “write report” and “write file”.  Modelsim also had windows that used the 
term “save”, such as “save format” and “save changes”.  We combined all of these menu items and, based on which 
window was active, changed only the second word of the item.  Depending on which window is active, the save 
command label could be “Save Report”, “Save File”, “Save Format” or “Save Changes”.   

Active Window Menu – Through careful categorization and using partially dynamic menus we were successful in 
consolidated the majority of menu items.  However, we found that most windows defined a set of commands that 

34



were unique and could not be generalized or and combined with an existing menu pick.  This issue was resolved by 
adding a main menu pull down that was specific to the active window.   

Figure 4 

The active window menu text changes each time a new window is activated.  The label text displays the name of the 
window and is useful for quickly determining which window is currently active. 

3.0 Window Layout 

For many years, the Modelsim GUI was based on a paned widget.   As there were only a few windows, the ability to 
resize each pane was the only feature needed (figure 5).   

Figure 5 

As Modelsim added support for more HDL languages and advanced debug features, the number of windows 
multiplied along with and the number of windows that a user typically opened.  When a user opened a new window 
using the paned widget, screen real estate was taken away from the other windows to make room for the newly 
opened window.  As the number of panes increase, the paned widget eventually became cluttered and some panes 
become too small to be useful (figure 6).   

Figure 6 

When the project window is active, the active 
window menu lists project specific items.

When the objects window is active, the active 
window menu lists object specific items. 

35



It was evident that the paned widget was an incomplete solution when many windows were opened.  Customers 
complained that Modelsim lacked layout flexibility and that the tool was not using the limited screen space 
effectively.

In order to resolve the issue, we first needed to understand what a user’s ideal layout might be.  Over a two year 
period we gathered information from customers on how they wanted their windows organized.  At the Mentor 
Graphics User2User[3] conference we placed users in front of various window proto-types and asked them to open 
windows that they commonly used and organize them in fashion that worked best with their usage model.  Based on 
this study, some interesting facts emerged.  

-Users typically have a strong opinion on how windows should be placed and organized. 
-User opinions vary dramatically on how windows should be placed and organized. 
-A user’s ideal layout will change depending on how they are using the tool. 

The key discovery was that while window layout is important, there is no single layout that meets everyone’s needs.  
Window organization and placement is a personal preference.   

In addition, we found that customer layouts involved placing a window in one of three basic states, paned, tabbed or 
stand-alone.

           
Paned Windows                        Tabbed Windows               Stand Alone Windows  

Figure 7 

When asked to describe their ideal window layout, the majority of users defined layouts that used a combination of 
these states.   Supporting all three of these states was a clear requirement as well as providing an easy to use 
interface for manipulating the layout. 

3.1 Paned Windows 

A common request with paned windows was the capability to rearrange the panes.  We achieved this feature by 
extending the paned widget to support dragging and dropping of panes.  Now, when a window’s header (or more 
specifically a pane’s header) is selected and dragged, drop zone highlighting appears under the mouse.  This 
highlighting indicates that the window will be placed at this location should the mouse button be released. 

36



Figure 8 

Each pane has a drop zone above and below as well as on the sides.  There are also drop zones on the outer edge of 
the main pane.  Given this combination of drop zones, users can produce any pane layout they wish. 

3.2 Tabbed Windows 

Tabbed windows are a popular way of displaying multiple windows while reducing the amount of screen real estate 
required.  A tab group is a paned window with a group of tabs at the bottom.  Selecting a tab raises that tab’s 
window.  Through discussions with users we discovered one obvious draw back with tab groups.  Visibility of 
members of a tab group is mutually exclusive; a user can only see the contents of one window at a time.  Plus, we 
found that there are no ideal tab groupings.  Regardless of which windows are placed in the tab group, there will be 
a set of users that dislike the grouping and want to see the grouped windows simultaneously. 

The resolution to this issue was simple: allow users to define their own tab groups.  Using the existing pane drag 
functionality, we added a new drop zone to on the center of a paned window.  When a window is dropped at this 
location, the destination pane adds the dragged window into its tab group.  If the destination pane is not a tabbed 
group, it becomes one. 

Figure 9 

2 – Drag to this location – notice 
the blue drop zone highlight 

3 – Release the mouse and the window pane 
has been moved to the new location 1 - Selecting the header 

1- Select the windows tab and 
drag to a new location 

2- The drop zone highlight indicates 
the window will be placed here 

3- The resulting drop forms a new tab 
group 

37



3.3 Stand-alone Windows 

Certain users are accustomed to working with windows that are separate and stand alone on the desktop.  Modelsim 
supports this usage mode by allowing a window to be “undocked” from the main window and placed as a stand 
alone window.   

Figure 10 

3.4 Other Layout Features 

The three window states described here provide the flexibility needed to achieve each user’s custom layout.  In 
addition to these features, we found that a user’s ideal layout changes depending on how they are using the tool.  If a 
user is running a simulation they are interested in one set of windows.  If they are examining code coverage they are 
interested in a completely different set of windows.  A window that has very important data in one phase of the 
project may become of little interest in a different phase of the project.   

Users can save layouts and restore them, but we found it very useful to automatically select a users’ layout based on 
how the tool is being used.  If a user turns on code coverage, for example, Modelsim loads the layout that was last 
used when code coverage was on. 

Figure 11 - The possibilities are endless.... 

1- Selecting the undock button on the 
window header undocks the window. 

2- The window is removed from the 
main pane and becomes a stand-alone 
window on the desktop 

38



4.0 Conclusion 

As the number of windows within a tool increase, certain issues appear that are not experienced by a tool with few 
windows.  These issues appear slowly and grow worse as the window count increases.  The approaches described 
here have been implemented within Modelsim.  They have reduced window development time and have been well 
received by users of Modelsim.  

5.0 Acknowledgements 

Special thanks to the Tcl/Tk community for providing a powerful, flexible, and portable GUI platform.  Also special 
thanks to Brian Griffin who had a hand (or both) in identifying, developing and implementing the solutions 
described here. 

6.0 References 

[1] Doulos, A Brief History of VHDL, http://www.doulos.com/fi/desguidevhdl/vb2_history.htm. 
[2] Doulos, A Brief History of Verilog, http://www.doulos.com/fi/desguidevlg/vb2_history.htm  
[3] Mentor Graphics User2User conference.  Mentor Graphics Corporation 8005 SW Boeckman Road Wilsonville, 

OR 97070, 2007 & 2008. 
[4] Johnson, Jeff, GUI bloopers: Don’ts and Do’s for Software Developers and Web Designers, Morgan Kaufman 

Publishers, San Francisco, (2000), pp 66. 
[5] Miller, D. (1981). The depth/breadth trade-off in hierarchical computer menus.  

Proceedings of the Human Factors and Ergonomics Society 25th Annual Meeting (pp. 140-200) Santa Monica, 
CA.

39



40


