Comit's CVXT Tool

Venkat lyer

Agenda

e Who am |

e What is CVXT

e What is Hardware Simulation

e How does Tcl/CVXT Help

e The Challenges and Solutions

e How Coroutines Helped

e Coro'ized CVXT Implementation
e CVXT Usage Example

e Conclusions

e Acknowledgements

Ask questions anytime. | stop when | run out of time.

About the Author

e EE-like Undergrad, Comp Science Grad
e Main work-like Interests:
o Compilers and Languages
o Tools and Automation
o Hardware Logic Design and Generation
e Tcl since early 90s 16-bit DOS Turbo C. Big Fan.
e http://wiki.tcl.tk/vi - venkat@comit.com
e 17 years at Comit Systems, Inc: Chips/Boards/Systems/SW
o Niche Contract Engg Firm in Silicon Valley.
e Comit uses Tcl for: Web Site, Internal Systems, EDA Tool-
lets, Backup, everything

CVXT

e Verification Engine from the 90s
e Enables writing Tcl tests for hardware designs

Verilog
Simulator

Hardware Modeling

1. wait for a or b to change

2. compute a AND b a
3. store the value iny
4. go back to step 1 b

This is called one hardware
rocess
PIoR=S always @(a or b)
y =a&b;

Hardware Simulation

e Event Driven Scheduling Kernels

e Millions of Virtually Parallel "Processes"

e Each Process suspended on signalling events or time
e Very good at modeling hardware.

Issues:
e Not designed for verification (many new efforts ongoing)
e Level of abstractness somewhere between C and assembly
e Testing extensions need more licenses ($$$$35%9%)
e New language requires new thinking

Why Tcl

e One less language. Most hardware designers know Tcl.
o Most EDA tools use Tcl as the scripting language
e Portable, Built to be embedded
o Easy to support multiple simulators and platforms
m VSIM, ncsim, vcs, cver, icarus.
m 32/64. win/Inx/amd64/sparc
e Event driven (more later)
e Dynamic
o Saves costly HDL re-compile times if tests change
e Easier OS services access
o display images as they're processed
o send sniffed packets into the simulator
o fcltest

Simple Example

"Thread" runs one user context, typically runs tcltest on a
part of a design. Say an ethernet interface.

set r [get tb.ethernetO.error]
if {$r == 0} {
put tb.ethernet0.txen -value 1
set w [wait -signal tb.ethernet0.eof -time 1000]
set tb.ethernet0.txen -value O
if {$w eq "time"} {
error "Packet was not transmitted in 1000 ns"
b
b

Challenges

Mainly due to supporting various simulators from different
vendors on multiple platforms.

e [hreads
o pthread libc incompatibilities
o ucontext with thread-enabled Tcl, windows.

e Multiple Tcl Versions in one Process Space
o Still support 8.3.4 in the simulator
o CVXT runs bleeding edge.

Multiple Tcl Versions in One Process

e Build Tcl enabling shared support.

$./configure --enable-threads —enable-shared
$ make

e Link forcing resolution

$ gcc -m64 -WI,-Bsymbolic -o cvxt.so <cvxt objects> \
<tcl core objects> -shared <platform specific -l flags>

e cvxt.so is loaded into the simulator (from command line)
e Initialization is a script-mod Tcl_Applnit + startup script
e Extensions to cvxt are built with -DUSE_TCL_STUBS

Enter Coroutines

The perfect match
e N0 more threads. --disable-threads worked
e simplified build (no ucontext emulation on windows)
e faster threads (about 10% improvement over 10000
switches)
e enables multiple contexts per thread
o called branches, which share globals/procs/..

Following slides explain CVXT Implementation using
coroutines.

Coro'd CVXT: Thread Creation

proc create_thread args {
set uO [interp create u0Q]
foreach cmd [list get put] {
$u0 alias $cmd $cmd

¥

$u0 eval {
proc wait args {
return [yield [concat u0 $args]]

}

proc start {} {
catch {
user code here sourced from $args.

¥
»
¥

process [$u0 eval coroutine __run___ start]

¥

Coro'd CVXT: Thread Switching

proc process | {
set child [lindex $I 0]
foreach arg [lrange $l 1 end] {
add call backs into simulator,
and remember in data structure

¥
»

proc callback args {
called by simulator
figure out which threads need to be awakened
foreach interp $wakeup_threads {
process [$thread ::__run__ $args] ; # resume the coroutine.

¥
»

CVXT: TclOO Example, Definition

class create mailbox {
constructor {} {
set name [namespace tail [self object]]
if {[catch {set mbdata $shvar(mailbox_$name)}]} {
set mbdata [list]
b

set shvar(mailbox_$name) $mbdata
b
method put args {
lappend shvar(mailbox_$name) $args
¥
method get {} {
while {![llength [set mbdata $shvar(mailbox_$name)]]} {
wait -shvar mailbox_$name
b
set shvar(mailbox_$name) [lrange $mbdata 1 end]
return [Irange $mbdata O]

¥
¥

CVXT: TclOO Example, Usage

Server

mailbox create reg_writer
while 1 {
lassign [reg_writer get] mbox op addr data
do the register transaction in simulator or hardware
mailbox create $mbox
$mbox put $read_data

b
Client

mailbox create reg_writer

mailbox create reg_response

reg_writer put reg_response read 0x30943544 0x33
set reg_value [reg_response get]

Conclusions

e Coroutines are good
o They make multicontext event driven programming
simpler (and in my case faster)
e It's good to piggyback on a language like Tcl
o Has well thought out features that CVXT
e Tcl makes a good verification language

Acknowledgements

e John Osterhout for the Tcl Language

e Activestate, the TCT, maintainers and supporters of the Tcl
Language and the Wiki

e Miguel Sofer for NRE.

e Many Tclers in the Chatroom

e Organizers of Tcl2009.

