
Comit's CVXT Tool
Venkat Iyer

Comit Systems, Inc.

1. Abstract
CVXT is a Verification Engine from Comit that dates back to the early 90s. It is primarily
an control and event based interface between a hardware language software simulator
and tcl. This paper is about the Tcl and software side of the tool, the challenges it faced
and how coroutines helped.

2. Introduction
2.1. About Comit
Comit is a 17+ year old silicon valley company. Our main business has been designing
chips, boards, systems and software for our customers. We call it contract engineering
as we go all the way from specifications to supporting volume production of chips. All
along we have developed tools that improve productivity and improve hardware design
effectiveness.

2.2. Comit and Tcl
From web servers to invoicing to physical layout tools - everything happens in Tcl at
Comit. We have a whole set of design tools code-named Fiesta® for Process
Standardization and Accelleration. Most of these tools target areas not traditionally
addressed by standard industry EDA tools. Many of the tools are completely Tcl, but all
use Tcl to some degree.

2.3. CVXT
One of these tools is called CVXT, the verification engine. We wrote this tool in the
early 1990s to be able to write tests in Tcl to verify hardware designs.

3. HDL Simulation
A Hardware Description Language (HDL), like Verilog or VHDL, is used to describe
digital hardware circuits. Boolean gates like AND and OR are most familiar to software
engineers. But designing hardware in gates would be like writing software in machine
code. HDLs provide a far higher level of abstraction, akin to what C would be to
machine code. This HDL can be then "synthesized" into digital logic which is put into
silicon. This HDL can also be verified by simulation.

HDL simulators are essentially event driven scheduling kernels, which have lots of
virtually parallel processes. Each process can suspend for some simulation time or an

85

event. HDLs are still targeted for designing hardware, and they don't lend themselves
to easy test writing. Over the years, HDLs themselves have added features to make
writing tests and building test environments easier. SystemVerilog is an example.

Like CVXT there have been attempts to build interfaces from Verilog to other
languages, Vera (from Synopsys) and Specman/E (from Cadence) are two examples.
 There have also been attempts to do Hardware Design using more common languages
- JHDL in Java, and SystemC in C++ are two examples.
But Verilog (mostly in the US) and VHDL have remained the mainstay for digital design.
At Comit, more than 90% of the designs we do are in Verilog.

4. Why Tcl in CVXT
The early reasons for doing CVXT were to make our verilog simulations more realistic.
One example is to display Images before the hardware processed it, and as it was
processing it. Another example is to snoop packets off the network and send them for
processing into the hardware design.

The main reasons for using Tcl:
 Tcl is built to be embedded, so building it into multiple simulators would be easy
 Tcl supports event driven programming. Though I don't use the tcl event loop,

most of the support infrastructure is used here.
 Tcl is interpreted and dynamic
 Tcl provides access to OS and hardware features in a platform independent way
 Tcltest provides a test framework

And pleasantly, Tcl is a known language in the hardware design world. As most users of
these tools are hardware designers. Most Electronic Design Automation (EDA) tools
have moved to using Tcl as the scripting as well as the interactive command language.
Mentor Graphics was an early adopter in vsim, but now it's hard to find a non-Tcl tool.

5. Brief CVXT Description
CVXT provides the hardware verification engineer with a multithreaded, event driven,
test environment, to effectively verify the hardware design before committing it to
silicon.

This paper talks about CVXT from the software point of view. The user, a hardware
verification engineer, writes his tests in Tcl, over the layers of libraries. The interface to
the simulator, the kind of simulator is transparent. Sometimes the same test is run over
real hardware rather than a simulator.

86

At the lowest level, this is how CVXT allows you to run tcl inside a hardware simulator.
Verilog has a standardized C API called VPI (or sometimes PLI2), which all the
simulators support.

As the figure shows, there are two modes of communication between Tcl and Verilog.
There's a synchronous interface shown as the arrow going right to left.
This is mainly how the CVXT thread is started up, and how tests in Tcl can set signal
values in verilog or get hardware signal values from the simulator, and how Tcl controls
simulation progress.

The Asynchronous interface is shown as an arrow going left to right. These are
callbacks from the verilog simulator. There are two main kinds of callbacks. One is
value change callbacks (VCBs), which are like variable write traces. The other is a time
callback, where you can be called back after a particular amount of simulation time.

6. Some CVXT operation details
I use the word "thread" loosely. The Challenges section below will elaborate more on
that. There is one main controller thread that manages and synchronizes user threads.
Each user thread runs a tcl script, with access to a set of facilities provided by CVXT to
interact with the hardware program.

The threads themselves are cooperating threads, which is very much like HDL
processes. Each thread runs till it's done for now and wants to sleep till some specified
event. Like HDL processes, the threads are perceived to run in parallel, but are run
one-by-one.

Verilog
Simulator

Main
CVXT
Thread

Events

Control,
Set,Get

User Thread

User Thread

User Thread

User Thread

V

P

I

87

6.1. A Simple CVXT Example

set r [get tb.ethernet0.error]
if {$r == 0} {
 put tb.ethernet0.txen -value 1
 set w [wait -signal tb.ethernet0.eof -time 1000]
 set tb.ethernet0.txen -value 0
 if {$w eq "time"} {
 error "Packet was not transmitted in 1000 ns"
 }
}

The get retrieves the value of a hardware signal. The put changes the value of a
hardware signal. The wait statement says that we are done for now and are waiting for
a signal to change or a timeout to occur.

The interesting part is that when the wait is encountered, this thread suspends. Other
threads continue. When the simulation proceeds to a point where the eof signal
changes, this thread continues.

7. The Challenges (and solutions)
The main source of the challenges were the variety of simulators and OSs to be
supported. The tool is deployed over a variety of simulators, e.g.

 Aldec's Riviera Pro (with Tcl)
 Cadence's NC Verilog (with Tcl)
 Mentors Modelsim (with Tcl)
 GPL Cver (no Tcl)
 Icarus Verilog (no Tcl)

For each simulator, various versions with each's own idiosyncracies are supported.

The operating systems supported are
 Linux 32-bit
 Linux 64-bit
 Solaris 32-bit
 Solaris 64-bit
 Windows 32-bit

7.1. Threading
Each user thread expects to retain context. The code after the wait should run just as if
it had just paused there.

88

This translated nicely into Tcl's threaded model. Early tool versions used Tcl built with
threads enabled. Each user thread was mapped into it's own Tcl Thread in it's own
interp. Context switches were handled as thread switches. This worked well on
Windows, but on Unix, we had a lot of hard-to-explain crashes, depending on whether
other simulator extensions were loaded. We traced this down to libraries being different
on pThread based implementations, and conflicting libraries getting loaded - some
threaded, some non-threaded.

We then moved to using ucontexts. We still built Tcl threaded, because it had to handle
context switches, but we didn't use the Tcl thread extension. On windows, we just built
a ucontext library which was just a wrapper around real threads anyway.

Inter-thread communication was already handled as a single argument during
invocation and resumption. A thread suspension/exit causes a single (complex) return
value, which results in a long

7.2. Multiple Tcl Versions in one process space
I hit this problem many times in many variations. The EDA vendors started favoring Tcl,
but they remained woefully behind. The latest and greatest from one EDA vendor is on
8.4.13. I support many versions. I only dropped support for 8.0.5 in the simulator last
year.

On the other hand, CVXT has stayed current (often going off cvs head, as it does now).
I like my users to have access to the latest and greatest Tcl features. Object
orientedness and dicts being the ones I needed Tcl 8.5 mostly for.

7.2.1. Build Process
I build Tcl from sources with threads enabled. I leave the source directory lying around
with the objects.

% ./configure --enable-threads –enable-shared
% make

I do not run the make install step. At the end I have all the objects build for the full Tcl
library, including a few that I don't really need - like tclAppInit.o and cat.o.
The cvxt files are compiled with -DSTATIC_BUILD, which only affects Windows. The
link is also special. Logically:

* gcc -m64 -Wl,-Bsymbolic -o cvxt.so <cvxt objects> \
 <tcl core objects> -shared <platform specific -l flags>

The -Bsymbolic forces gcc to bind global references locally, thereby preventing cvxt
from calling functions in the Tcl version built into the simulator.

89

7.2.2. Run Time
cvxt.so is loaded into the simulator (e.g. with the -loadpli flag on Riviera Pro). At startup
it adds commands that can be used in vhdl, and optionally starts up some tcl threads.
Threads are created on the fly from Tcl and or HDL, and die on error or finishing
execution.

Extensions to cvxt in C are all stubs enabled, and are blisfully unaware of the multiple
Tcls.

8. Enter Coroutines
Coroutines were a wonderful fit. I started using them as soon as they got into the
sourceforge codebase. My previous thread implementations were in C. Now I could
handle the threads at the script level. Here are the major advantages for me to switch
to coroutines:

 No more threads. I could build Tcl with --disable-threads and still be able to
handle context switches. This

o simplified my build process
o sped up creation of threads and context switching

 The possibility of having multiple contexts per thread. I call this branches. This
simplifies datasharing and is very similar to fork and join in Verilog.

I've already deployed versions with coroutines transparently to users.

9. CVXT Coroutine Implementation
Tcl is started off by a call to the thread creation routine from either the HDL or from the
simulator as part of it's initialization.

9.1. Thread Creation
On the first call, cvxt initializes the tcl subsystem, creates the main interpreter, and forks
off the user thread based on the parameters passed in.
The user tcl runs all the way to a wait or till the end. The wait causes the thread to
suspend (yield). When the main thread wants to wake the thread up, it sends the
reasons for the wakeup to the thread, which becomes the return value of the yield. The
following "code" shows the creation procedure in the main interpreter.

90

proc create_thread args {
 set u0 [interp create u0]
 foreach cmd [list get put] {
 $u0 alias $cmd $cmd
 }

 $u0 eval {
 proc wait args {
 return [yield [concat u0 $args]]
 }

 proc start {} {
 catch {

user code here sourced from $args.
 }
 }
 }
 process [$u0 eval coroutine __run__ start]
}

9.2. Thread Switching
The process procedure in the main thread expects to get a list of events that the thread
wants to wait on. The main thread adds callbacks into the simulator, processes. If any
other threads have been activated, it runs them. When no threads remain, it returns
control to the simulator.

proc process l {
 set child [lindex $l 0]
 foreach arg [lrange $l 1 end] {
 add call backs into simulator, and remember in data structure
 }
}

proc callback args {
 # called by simulator
 figure out which threads need to be awakened
 foreach interp $wakeup_threads {
 process [$thread ::__run__ $args] ;# resume the coroutine.
 }
}

91

9.3. A more complex example
This example is of a mailbox between multiple user threads. This is again common in
EDA verification environments. Each mailbox can have any number of producers
(writers), but only one consumer.

class create mailbox {
 constructor {} {
 variable name
 set name [namespace tail [self object]]
 if {[catch {set mbdata $shvar(mailbox_$name)}]} {
 set mbdata [list]
 }
 set shvar(mailbox_$name) $mbdata
 }

 method put args {
 variable name
 lappend shvar(mailbox_$name) $args
 }

 method get {} {
 variable name
 while {![llength [set mbdata $shvar(mailbox_$name)]]} {
 wait -shvar mailbox_$name
 }
 set shvar(mailbox_$name) [lrange $mbdata 1 end]
 return [lrange $mbdata 0]
 }
}

This is akin to having one server with multiple clients. The server thread serves register
access requests. It waits for a request on the writer queue, does the transaction and
puts the response back on the response mailbox.

mailbox create reg_writer
while 1 {
 lassign [reg_writer get] mbox op addr data
 do the register transaction in simulator or hardware
 mailbox create $mbox
 $mbox put $read_data
}

92

The client thread looks like this:

mailbox create reg_writer
mailbox create reg_response
reg_writer put reg_response read 0x30943544 0x33
set reg_value [reg_response get]

10. Future Directions
Implement branches. This allows for multiple contexts in one thread, but with shared
globals.

Package as a single file shared lib, one readme and and the tclsh replacement, to allow
the framework to work outside of a simulator.

11. Acknowledgements
 John Osterhout for the Tcl Language
 Activestate, the TCT, maintainers and supporters of the Tcl Language and the Wiki
 Miguel Sofer for NRE.
 Many Tclers in the Chatroom, who've helped me with various details
 Organizers of Tcl2009.

12. About the Author
Venkat holds a degree of Master of Technology in Computer Science from Pune
University, India. His work interests are Logic Design, Tcl, Languages and Automation.
He has contributed to many open source projects and enjoys basketball, snowboarding,
playing the guitar, and hiking. He leads the engineering at Comit Systems, Inc. More
information about him is at http://wiki.tcl.tk/vi. He can be reached by email at
venkat@comit.com

93

94

