
Reflecting and Transforming Channels

Andreas Kupries ActiveState Software Inc. 409 Granville Vancouver, BC CA

andreask@ActiveState.com

ABSTRACT
This paper describes the history of the reflected and trans-
formed channels exposed at the script level in Tcl 8.5 and
higher, provides insight into their implementation, and demon-
strates various applications of this feature.

1. OVERVIEW
While the script-level appearance of reflected and trans-

formed channels in Tcl 8.5 and Tcl 8.6 (See TIPs 219 [1] and
230 [2]) make them appear to be a very new feature of the
core, the technology underneath is actually quite old with a
rich history behind it. This paper was written to shed some
light on the technology, its applications, and its history.

The paper is structured as follows: in chapter 2 we pro-
vide an anecdotal overview of the history of this feature. In
the next chapter, 3 we present its implementation in the Tcl
core. Chapters 4 and 5 then discuss how to use this fea-
ture, i.e. how to write a channel, and what applications are
possible. At last, chapter 6 discusses our conclusions.

2. HISTORY
The first attempts at providing user-specified transforma-

tion of data flowing through channels were made in 1996
(Tcl 7.6 was current at that time), by writing new chan-
nel drivers in C (the ”transformers”) which manipulated
the data as required and talked to a second channel (the
”base”), referenced by either pointer or name (See figure 1).

This quickly ran into trouble. One problem was owner-
ship. Is the base now owned by the transformer or not ?
Both possibilities have their drawbacks. In a specific sit-
uation this is handled easily, weighing the drawbacks and
deciding on one. Not so much if we are trying to work on
a general framework for such channels. Another problem,
the base is still visible at script level, allowing all sorts of
mischief to be done on it the transformer will not be aware
of, such as injection of arbitrary data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tcl ’2009 Portland, OR, USA
.

Base Channel

Transformer Channel

Tcl Script

Figure 1: Transform with separate channels

Tcl Script

Channel
State

Base Channel

Transformer Channel

Figure 2: Stackable transforming channels

Because of these issues the framework quickly evolved to
have a much tighter coupling between transformer and base,
the transformer effectively assuming the identity of the base,
see figure 2. Internally this caused a split in the Channel
structure, with the identity information and other major
state moving to the new ChannelState structure, shared be-
tween the base and transformers in the stack.

This model then went forward, with the first series of ex-
ample transformers becoming the Trf package [16] in Oct
1996, and the necessary low-level support in the core dis-
tributed as patches with Trf. The subdirectory ”patches/”
of the Trf source distribution still contains them, from Tcl
7.6 up to Tcl 8.1b3.

In 1999 the patch and feature was then accepted into Tcl
8.2, under the name ”Stacked Channels”.

The primary limitation was that transformers had to be
written as C extensions, which possibly slowed acceptance
and use by the community. After Trf the only packages I am
aware of which provide transformers are the Matt Newman’s
TLS [15] binding to OpenSSL (currently maintained by Dan

73

Razell and Jeff Hobbs), and my own TrfCrypt [17].
The next step, breaking out of this limitation and ex-

posing transformers at the script level, was already done
in 1997, via Trf’s ”transform” command [19], and again in
1999 with the separate gIOT package [9]. The latter ceased
development in 2000. Trf’s variant of this on the other hand
continued to be developed, notably it became more complex
in the area of seeking, allowing transformation ratios and
such. For TIP 230 [2] this complexity was abandoned again.

Then nothing more was done for four years, except for the
maintenance of Trf, TLS, etc. until near the end of 2004 ex-
posing transformers and base channels was proposed in the
TIPs 230 [2] (transformer) and 219 [1] (base). The latter
proposed something new, but in the same line of develop-
ment, i.e. exposing more of the core’s internals to the script
level. The new feature tracked faster and was integrated
into the core August 2005, in time for Tcl 8.5. TIP 230 [2]
then languished quite a bit more, with another three year
gap between May 2005 and April 2008, until it finally was
integrated into the core in June 2008, Tcl 8.6b1.

Now users of the core are free to write both transformers
and base channels in Tcl, moving only performance critical
parts into C as needed. And one of the first base channels
written based on Tcl 8.6, by Colin McCormack for his Wub
[18] is a plain identity channel talking to a separate socket
channel, to dissociate reused socket names from the channels
names seen by the Wub internals. In other words, the very
scheme which started us on this road.

We have come full circle.

3. IMPLEMENTATION
The implementation of reflected and transformed channels

resides in the two files

generic/tclIORChan.c Reflected Base Channel

generic/tclIORTrans.c Transformed Channel

of the Tcl core. They are part of the general Tcl I/O core
and implement, in essence, a channel driver each.

3.1 Driver Basics
At the center of these two drivers is code mapping the

calls to the channel driver functions by the Tcl core into
invocations of the specified/associated script level handler
command and its methods, and then to process the results
before delivering them as the driver’s result. This process-
ing includes, for example, the unpacking of the returned
Tcl Obj’s into C values, and the delivery of errors. For de-
tails on the latter see section 3.2.

See the tables 1 and 2 for a quick and compact overview
of these mappings. The full details can be found in TIPs
219 [1] and 230 [2], and also in the manpage [refchan] [7].

As can be seen, the mapping for transformers is more
complex than for base channels. This is due to the necessity
of having to handle corner cases introduced by seeking and
end of file which do not appear in base channels.

Also note that the semantics of “read” and “write” differ
between base and transformer channels, despite the identical
method names.

0This driver function is actually never called by Tcl’s I/O
core.

<channel creation> →“initialize”
closeProc →“finalize”
inputProc →“read”
outputProc →“write”
seekProc →“seek”
setOptionProc →“configure”
getOptionProc →“cget”, “cgetall”
watchProc →“watch”
getHandleProc Not mapped. See section 3.4.
close2Proc Not mapped.
blockModeProc →“blocking”
flushProc Not mapped.0

handlerProc Not mapped.
wideSeekProc →“seek”
threadActionProc Not mapped. See section 3.3
truncateProc Not mapped.

Table 1: tclrchannel – Driver functions ↔ methods

<transform creation> →“initialize”
closeProc →“drain”, “flush”, “finalize”
inputProc →“drain”, “limit?”, “read”
outputProc →“clear”, “write”
seekProc →“clear”, “flush”
setOptionProc Passed to base.
getOptionProc Passed to base.
watchProc Not mapped.
getHandleProc Passed to base.
close2Proc Not mapped.
blockModeProc Not mapped.
flushProc Not mapped.0

handlerProc Pass up.
wideSeekProc →“seek”
threadActionProc Not mapped. See section 3.3
truncateProc Not mapped.

Table 2: tclrtransform – Driver functions ↔ meth-
ods

Method tclrchannel tclrtransform

“read” Read more data
and return it

Transform the
provided data
for reading and
return results, if
any

“write” Write the pro-
vided data

Transform the
provided data
for writing and
return results, if
any

The main point for transformers is that these method al-
ways take data for transforming, and return results, if any,
possibly partial. The actual reading from and writing to the
base is handled at the C-level. In the case of base channels
there is no base, and the script-level has to implement what
it means when to read or write data.

3.2 Error delivery
The delivery of errors reported by the script level handler

of a reflected channel is another significant portion of the
code, because it can raise arbitrary messages, whereas the
channel driver functions as designed at the time of their
introduction basically deal only with POSIX error codes,

74

i.e. “errno”, and nothing else.
A redesign of the API to incorporate proper error delivery

was not possible, because it is a public part of the core’s API
and had to stay backwards compatible.

The solution was to introduce four additional functions in
the public API (see listing 1) to store and retrieve the full
error information in either per-channel or per-interp state,
and then modify the implementations of the higher functions
in Tcl’s I/O core to query this state before falling back to
the delivery of a POSIX based error. This change enables all
channel drivers inside or out of the core to report arbitrary
errors, although only the drivers for the reflected channels
make use of this facility at this time.

Listing 1: API for the delivery of arbitrary errors
void Tcl SetChannelError

(Tcl Channel chan , Tcl Obj∗ msg)

void Tcl SetChanne lError Interp
(Tc l In t e rp ∗ ip , Tcl Obj∗ msg)

void Tcl GetChannelError
(Tcl Channel chan , Tcl Obj ∗∗ msg)

void Tcl GetChannelErrorInterp
(Tc l In t e rp ∗ ip , Tcl Obj ∗∗ msg)

In essence these functions construct and maintain an area
through which information can be passed between driver
and higher layers which passes the narrow API of the driver
functions themselves by, as shown in figure 3. This is the
source of the references to the “bypass area” in various com-
ments throughout the implementation. The solution is not
very elegant, but anything else would have requires an in-
compatible redefinition of the whole channel driver structure
and of the driver functions.

Tcl IO System

SetChannelError(Interp)

GetChannelError(Interp)

Channel Driver Function

Tcl Handler Method

POSIX

Tcl Error

Bypass Storage
Tcl Error

Figure 3: Delivery of arbitrary errors, bypassing the
narrow API

Further things of note

1. The usage of Tcl Obj’s for the information storage
binds the information to a single thread, making a
transfer across thread boundaries impossible.

2. The “msg” argument of the function does not contain
a plain string, but has to be a list of uneven length.

The last element is interpreted as the actual error mes-
sage in question, and the preceding elements are con-
sidered as option/value pairs containing additional in-
formation about the error, like the errorCode, etc. I.e.
they are an extensible dictionary containing the details
of the error beyond the basic message.

As a safety precaution any -level specification submit-
ted by the driver and a non-zero value is rewritten to
a value of 0 to prevent the driver from being able to
force the user application into the execution of arbi-
trary multi-level returns, i.e. from arbitrarily changing
the control-flow of the application itself. Analogously
any -code specification with a non-zero value which is
not error is rewritten to value 1 (i.e. error).

3. All the functions are necessary. The regular variants
because many driver functions have only a Channel*.
The Interp variants, because some of the driver func-
tions, notably “closeProc”, have no channel to put
their error messages into.

3.3 Threading
An important part of the implementation and the design

was the ability to handle threading, and the movement of
a base or transformed channel between threads. While the
latter cannot move by themselves they are moved together
with their base channel, should it be moved.

The issue is that while during a move of a reflected chan-
nel C from Thread A to thread B the Channel structure can
and is moved to B the handler command servicing C cannot
move. Because it depends on an unknown set of state in-
formation held by A, and is also supported by an unknown
number of packages loaded into A. Unknown to the I/O core
that is, making it impossible for the core to move the han-
dler.

Instead of simply forbidding the movements of reflected
channels a different solution was found.

First, instead of just keeping a reference to the Tcl inter-
preter holding the handler command and its state we keep
a reference to its thread as well. Then, whenever a driver
function is invoked and finds that it is called from a differ-
ent thread it uses the event system to forward its method
invocations to the proper thread for processing. In the im-
plementations all identifiers having “Forward” as prefix are
related to this.

It is this case-by-case checking of thread-location in the
driver functions which makes the use of “threadActionProc”
driver function superfluous, which is why it is not mapped
to anything, see the tables 1 and 2.

Important things to be aware of:

1. If the thread holding the handler command is not pro-
cessing events then the channel in question will block
waiting for the result of its method invocation, stop-
ping the sending thread as well. This may lead to
dead-locks. Beware!

75

Thread holding
Tcl Handler for
Channel C

Thread holding
Channel C

Channel C

Handler of C

Event Receiver
of Channel C

Figure 4: Reflection in Threads

This cannot be avoided, because the event system has
to be used for this, we have no other system in the
Tcl core for cross-thread execution of Tcl scripts and
commands.

2. When a thread or interpreter is deleted all reflected
channels created in this thread/interpreter are deleted
as well, in all interpreters they have been shared with
or moved into, and in whatever thread they have been
moved to. While this pulls the rug out under the
other thread(s) and/or interpreter(s), this cannot be
avoided. Trying to use such a channel will cause the
core to throw errors about unknown channel handles.

3.4 Limitations
The base channels suffer from one limitation inherent in

their design. As they are virtual, i.e. in memory, and, more
importantly, not known to the operating system they do not
have an OS-specific handle either. It is because of this that
their getHandleProc is not implemented, see table 1, but
another consequence is that they cannot be used as targets
for I/O redirection in command pipelines created by either
[exec] or [open|].

4. WRITING A REFLECTION

4.1 Base channel – Fifo

Fifo-Buffer

In this section we will now walk
through and explain the implementation
of a base channel using the reflection API.
The full sources of this channel can be

found in
examples/walkthrough/fifo.tcl

The class in question provides a channel with the same
semantics as Memchan’s [10] fifo channel.

proc : : f i f o {} {
return [: : c han c r e a t e {read wr i t e } \

[f i f o : : imp l emen t a t i o n new]]
}

o o : : c l a s s c r e a t e : : f i f o : : i m p l e m e n t a t i o n {

First a convenient wrapper around the creation process,
so that the user can create new fifos in the most simple way
possible, i.e. a single command invocation, no arguments.
The “new” method is used because do not really care about
the name of the object which is our handler command for
the channel.

con s t ruc to r {} {
set data {}
array set al lowed {read 0 wr i t e 0}
set r eques ted {}
set delay 10
return

}

de s t ru c t o r {
i f { $channel eq {}} return
close $channel
return

}
The life-cycle management is pretty simple. On construc-

tion we initialize our state variables, and on destruction we
close the channel, except if we were called from the “finalize”
method. This is explained when we come to that method
too.

method i n i t i a l i z e {c mode} {
set channel $c
my Allow wr i t e
return {

i n i t i a l i z e f i n a l i z e watch
read wr i t e
c on f i gu r e cget c g e t a l l

}
}

This is the first method the IO system will call. Its re-
sult is expected to be a list of all the methods the handler
supports. In a proper framework this list would likely be
computed automatically in some way.

The first two shown here are mandatory. The third, “watch”,
is also pretty much mandatory. While it can be left out if the
channel does not have to support file events, I can’t think
of any channel which would not.

As our channel is both readable and writable we have to
declare this here, and provide the necessary methods (see
below). As fifos are always created read/write, as shown in
the [::fifo] wrapper command above, we can ignore the
mode argument. Otherwise this tells us if user wishes the
channel to be readable, writable, or both1.

The last three methods we declare here as supported are
for the handling of channel options. The methods “cget”
and “cgetall” always go together, if present channel options
can be queried. The “configure” method can be used alone,
and enables the setting of channel options. In most cases we
wish to support both setting and querying options, requiring
all three of them.

Our channel here supports a single option “-delay” with
which the user can configure the interval between events
generated by the channel, in milliseconds.

method f i n a l i z e {c} {
my Disa l low read wr i t e
set channel {}
my dest roy
return

}
This is the last method the IO system will call, when

closing the reflected channel. We have to stop the generation
of any events which may still be active at this point, and
then destroy the handler object.

The channel variable is reset to prevent the destructor
(shown later) from recursively calling [close]. This means

1List of “read”, “write”

76

that the code here allows the closing of the fifo through
the destruction of the handler object as well. One could
think that this does not matter given that the handler is an
anonymous object whose name is not made public when the
channel is created. Not true however, as the object destruc-
tion can also be triggered indirectly, through the destruction
of the containing namespace, interpreter, thread, or process.

method con f i gu r e {c opt ion value } {
my CheckOption $o
my CheckDelay $value
set delay $value
return

}

method cget {c opt ion } {
my CheckOption $o
return $delay

}

method c g e t a l l {c} {
return [l i s t −delay $delay]

}

method CheckOption {o} {
i f { $opt ion eq {−delay}} {

return
}
return −code error \

”Unknown opt ion $op t i on , expected −delay”
}

method CheckDelay { value } {
i f { [string i s i n t e g e r − s t r i c t $value] &&

($value > 0)} {
return

}
return −code error \

”Expected p o s i t i v e i n t e g e r , got $value ”
}

As said above, the fifo supports a single option “-delay”.
The code of the methods to handle setting and querying it,
including the error handling, should be pretty much self-
explanatory.

method read {c n} {
set read [string range $data 0 ${n}−1]
set data [string range $data $n end]
i f {$data eq {}} {

my Disa l low read
}
i f { $read eq {}} {

return −code error EAGAIN
}
return $read

}

method wr i t e {c bytes } {
append data $bytes
i f {$data ne {}} {

my Allow read
}
return [string length $bytes]

}
For the sake of simplicity of implementation a single scalar

variable “data” is used to hold the bytes currently written
to the fifo and not yet read back. In a more performance-
conscious implementation we would manage at least two
buffers and a read index to avoid copying data as much
as possible. For an example of that see the fifo in file
examples/base/fifo.tcl.

An important thing to remember, the buffer given to “write”
will contain a byte-array, and the same is expected as the
result of “read”. We are working with bytes here, not char-
acters.

The interesting parts, from the perspective of file event
support are the checks of “data” being empty, and the sub-
sequent allowance signals to the event manager for readable
events. This is done because when the fifo falls empty it
must not generate readable events any longer, and when
data is added we can start again with that. Assuming, of
course, that Tcl’s IO system requested them via a call to
“watch”.

Another important part is the check for the read result
being empty. When the fifo is empty we are not at EOF,
as more data can be added to the channel later. This is
signaled through the error. Just returning the empty string
in this situation would tell the IO system that the channel
has reached EOF.

method watch {c requestmask } {
i f { $requestmask eq $requested } {

return
}
set r eques ted $requestmask
my Update
return

}
This is the main entry point for the handling of file events.

Through this method the IO system declares the set of
events it is ready to receive. We ignore calls which do
not change anything, then remember the information in the
event managers state and at last combines this information
with the set of events the channel is able to generate at
this point. More information later, when we are looking at
the variables and methods of the event manager itself, i.e.
“Allow” and after.

variable \
data \
channel \
t imer \
delay \
al lowed \
r eques ted \
pos t ing

Now we are coming to innards for the handling of file
events. As this channel is entirely in memory, with no con-
nection to the OS as a source of events it is necessary to
generate any events by ourselves. Which of the events are
posted, if any, depends on two pieces of information, namely

allowed the set of events the channel is able to generate
per its own state,

requested and the set of events the IO system is ready to
receive.

The first we manage as an array variable which maps the
event names to a boolean flag, where True indicates that the
channel is able to generate the associated event. The second
is simply a copy of the list of events given as argument to
the method “watch”. The intersection of both, again a list,
is stored in the variable “posting”. See also figure 5 showing
the flow of data just described, and the methods involved.

The other three variables hold the Tcl handle of the chan-
nel the events will be posted to, the handle of the currently

77

requested allowed

Update

StartTimer

Post

posting

watch (dis)allow
Allowance

Figure 5: Event management dataflow

pending timer, if any, and the interval between timer invoca-
tions, in milliseconds. The first is initialized by method “ini-
tialize”, the last has a default of 10 milliseconds set during
construction and is accessible through the channel option.
The timer is managed by the upcoming methods “Update”
and “Post”.

method Allow { args } {
my Allowance $args yes
return

}

method Disa l low { args } {
my Allowance $args no
return

}

method Allowance { events enable } {
set changed no
foreach event $events {

i f { $al lowed ($event) != $enable } {
set al lowed ($event) $enable
set changed yes

}
}
i f { ! $changed} return
my Update
return

}

The first two methods in this block are the API by which
the channel implementation signals the event manager which
events it is able to generate. They are just thin shim over
the third method which simply checks the requested against
the current state, setting only the actual changes. At last
this method, like “watch”, calls the method “Update”, i.e.

method Update {} {
catch { after cance l $t imer }
set pos t ing {}
foreach event $requested {

i f { ! $a l lowed ($event)} continue
lappend pos t ing $event

}
i f { [llength $post ing]} {

my StartTimer
} else {

catch { unset t imer }
}
return

}

which combines the two sources of information, “allowed”
and “requested”, into “posting”, see also figure 5. If we have
events to post after that a periodic timer is started to do so.
To prevent multiple timers from going on in parallel any
pending timer is canceled. This automatically also handles
the case when no events can be posted, by just killing any
pending timer.

method Post {} {
my StartTimer
chan postevent $channel $post ing
return

}

method StartTimer {} {
set t imer \

[after $delay \
[namespace code \

[l i s t my Post]]]
}

At last we have the method which is called when our timer
triggers. It uses the standard pattern for re-scheduling itself
to make the timer periodic, and beyond that uses [chan

postevent] to inject the events into the IO system.

4.2 Transform channels – Base64

hello / aGVsbG8=er

29ybGQ= / world In this section we will now walk
through and explain the implementation
of a transformation channel using the re-
flection API. The full sources of this chan-

nel can be found in
examples/walkthrough/base64.tcl

The class in question provides a transformation using base64
(RFC 4648 [6]) to en- and decode the data flowing through
a channel. It uses Tcl 8.6’s new [binary encode/decode

base64] facility (see TIP 317 [4]).

proc : : b a s e 6 4 {chan} {
: : c han push $chan [base64 : : imp lementat ion new]
return

}

o o : : c l a s s c r e a t e : : b a s e 64 : : imp l emen ta t i on {

First a convenient wrapper around the creation process,
so that the user can set the transformation up in the most
simple way possible, i.e. a single command invocation, no
arguments. This is equivalent to what we did for the fifo
base channel shown in the previous section.

78

con s t ruc to r {} {
set encodebuf {}
set decodebuf {}
return

}

de s t ru c t o r {
i f { $channel eq {}} return
close $channel
return

}

The life-cycle management is pretty simple. On construc-
tion we initialize our state variables, and on destruction we
close the channel, except if we were called from the “finalize”
method. This was explained at that method too.

variable channel encodebuf decodebuf

The state of the transformation is pretty simple as well.
First a reference to the channel it is stacked on, used to
control the interaction of destructor and “finalize”, then the
two buffers to hold partial, not-yet-transformed data.

method i n i t i a l i z e {c mode} {
set channel $c
return {

i n i t i a l i z e f i n a l i z e
read wr i t e
c l e a r dra in flush

}
}

This is the first method the IO system will call. Its re-
sult is expected to be a list of all the methods the handler
supports. In a proper framework this list would likely be
computed automatically in some way.

The first two shown here are mandatory.
As we want our transformation to support both reading

and writing we have to declare this here, and provide the
necessary methods (see below).

As our transformation has to deal with partial data we
declare the last two methods as well, as extensions to “read”
(“drain”) and “write”-handling (“flush”), and provide their
implementations (see below).

method f i n a l i z e {c} {
set channel {}
my dest roy
return

}

This is the last method the IO system will call, when clos-
ing the channel the transformation is stacked on. We have to
clean up and release any resources used by the transforma-
tion which may still be active at this point, and then destroy
the handler object. In our example we have no resources to
free.

The channel variable is reset to prevent the destructor
(shown later) from recursively calling [close]. This means
that the code here allows the closing of the channel the
transformation is stacked on through the destruction of the
handler object as well. One could think that this does not
matter given that the handler is an anonymous object whose
name is not made public when the channel is created. Not
true however, as the object destruction can also be triggered
indirectly, through the destruction of the containing names-
pace, interpreter, thread, or process.

method wr i t e {c data} {
my Code encodebuf encode $data 3

}

method read {c data} {
my Code decodebuf decode $data 4

}

method Code {bufvar op data n} {
upvar 1 $bufvar bu f f e r

append bu f f e r $data

set n [Complete $bu f f e r $n]
i f {$n < 0} {

return {}
}

set r e s u l t \
[binary $op base64 \

[string range $bu f f e r 0 $n]]
incr n
set bu f f e r \

[string range $bu f f e r $n end]

return $ r e s u l t
}

method Complete { bu f f e r n} {
set l en [string length $bu f f e r]
return [expr { (($ l en / $n) ∗ $n)−1}]

}
The “read” and “write” methods are structurally pretty

much identical. The differences are in the en/decoding di-
rection, buffer used to hold partial data, and some constants.

Each extends their internal buffer of partial data with the
data offered for transformation by the C-level, then deter-
mines how much full data is ready to be transformed, runs
the transformation on them and returns the result of that
after removing the transformation input from its buffer.

This leaves the C-level of transformations with some trans-
formed data (possibly nothing!), and the remaining partial
data in the buffer.

An important thing to remember, the buffers given to
“read” and “write”will contain byte-arrays. We are working
with bytes here, not characters. This is true for “flush” and
“drain” as well.

method flush {c} {
set data \

[binary encode base64 $encodebuf]
set encodebuf {}
return $data

}

method dra in {c} {
set data \

[binary decode base64 $decodebuf]
set decodebuf {}
return $data

}
In some situations even buffered partial data must be

transformed. This is handled by the methods “flush” and
“drain”, for the write- and read-side of the transformation,
respectively.

If a transformation doesn’t support these methods then
that is an indication that the transformation doesn’t have
to care about partial data and everything will be done in
the “read” and “write” methods. Examples for this latter

79

are the counter, observe, and one-time-pad transformations
mentioned in the next section.

method c l e a r {} {
set decodebuf {}
return

}
This method is used to discard partial data on the read

side of a transformation. This is done when upon [seek],
and when writing to the channel, as this is an implicit seek.

This brings us to an issue which was not mentioned in the
walk-through so far, the handling of seeking. Its handling
can be seen as either a limitation of transformations, or an
application of the KISS principle.

The Tcl command handler for a transformation can sort
of infer when the channel it is stacked on is seeked by the
user by looking for invocations of “flush” and “clear”. This
however is not unambiguous and definitely not a supported
mode of operation. In general transformations should be
seen as being unaware of seeking.

At the C-level seeking is essentially a pass-through to the
base channel of the whole stack, using the methods “flush”
and “clear” to reset transformation internals. Ditto for
[tell], except that it does not reset internals. In other
words, for a channel with reflected transformations on top
[seek] modifies, and [tell] reports, the physical location
in the file or other base channel, and not some virtual loca-
tion in the transformed stream.

While doing the latter is possible in principle, it needs sup-
port from the transformations, and adds considerable com-
plexity to the internals of handling transformations. The
Trf package is an example of both the possibility, and the
complexity of this support [20].

At last note that C-level transformations can intercept
seek requests and implement their own semantics as they
see fit, so the above is not the general picture, just for re-
flected transformation. See again Trf for an example of more
complex seek semantics.

5. EXAMPLE CHANNELS AND IDEAS
This section provides examples demonstrating various ap-

plications for reflected channels, and ideas for more. All
examples use Tcl 8.6’s OO facility.

5.1 Base Channels
A base channel is in essence a bridge between Tcl’s I/O

system and whatever we are able to bend into being repre-
sented by either a block or (in)finite stream of bytes (effec-
tively files and pipes).

The simplest possibilities for this are

1. Another channel, and we can do anything to the data
read from and/or written into it. This is the origi-
nal idea which started us on our path, as detailed in
section 2 . Anything from section 5.2 applies here as
well.

This is what Colin McCormack actually does in his
Wub server [18], with the intent to decouple the socket
names as generated by the core from the names seen
by his code2.

2Tcl reuses names for sockets (as the OS handle is part of the
name), whereas Colin wished to have unique names which
are not reused ever.

A copy of his code can be found online [21], and under

• examples/colin/Chan.tcl

2. Then, of course, channels which do essentially noth-
ing, i.e. null and zero devices. These cannot be used
in command pipelines tough, see section 3.4 for the
explanation.

• examples/base/null.tcl,

• examples/base/zero.tcl, and

• examples/base/nullzero.tcl.

3. Next, deliver random bytes when reading, using any
of the many possible random number generators. This
should be useful in fuzz tests.

• examples/base/random.tcl

The implementation uses a very simple linear feedback
shift register. We are not using [expr]’s rand(), and
srand() functions because they are a global random
generator, and usage would be shared across all ran-
dom channels in existence. We wish to have separate
channels however, each independently seed- and us-
able.

Another series of relatively obvious possibilities, have the
channel represent something which is in memory, i.e. part
of the state of the Tcl interpreter.

1. A fixed string configured at construction time. In
essence a read-only in-memory file.

• examples/base/string.tcl

2. The content of some variable. This may be random
access or more like a queue and/or fifo, depending on
the exact implementation of the method for reading,
writing, and seeking. Further, the variable used for
the storage may be part of the channel, or outside of
it.

• examples/base/fifo.tcl,

• examples/base/memchan.tcl, and

• examples/base/variable.tcl.

3. A text widget. This could be random access, or stream
based for a log or terminal emulation3.

• examples/base/textwindow.tcl

It should be noted that the current implementation
plays a bit fast and loose with the data. Unfortu-
nately it cannot avoid doing so. The problem is in the
encodings. The “write” method is given bytes, which
may encode characters, as per the current channel en-
coding. For display these have to be converted back
into characters. This conversion breaks down in case of
multi-byte characters (like utf8). Partial characters at
the end of the buffer are semi-lost, because [encoding

convertfrom] processes only the complete characters

3Terminals take a stream of bytes, interpreting them as
characters and embedded commands, like ANSI color codes.

80

fully, and the last partial one is considered invalid and
replaced by a fallback. We are not given an indication
that this happened at script level, nor the option to
save the last partial character for a future call. Which
means that the remainder of the partial character at
the beginning of the next buffer will be another invalid
character, and, depending on the encoding, may even
completely break the conversion from then on.

Further note that while the full API of reflected channels
looks to be quite complex for the general case, for streams it
is possible to encapsulate it with only two or three elements
exposed, for a radically simpler form:

1. A single method to put data into the channel which
can then be read from it.

2. A single method to set a callback to be invoked when-
ever data has been written to the channel.

3. A single method to set a callback to be invoked when-
ever the channel changes between empty and not-empty
states.

This makes it possible to create more complex communi-
cation networks from any number of such 1/2-pipes. The
simplest is a full bidirectional pipe with two heads. This
enables, for example, stream-based communication between
threads, with the actual transfer of data hidden in the C-
level of the reflected channels (Remember section 3.3).

• examples/base/halfpipe.tcl, and

• examples/base/fifo2.tcl

5.2 Transform Channels
In contrast to the base channels demonstrated in the pre-

vious section transform channels are all about manipulating
the data flowing through them.

The simplest possibilities for this are

1. To do nothing.

• examples/transform/identity.tcl

2. Or, don’t change the data but divert it (or a just copy)
somewhere else. In general, just an observer, be it
of the data itself, or to compute information derived
from it, like the number of bytes, words, i.e. statistics,
checksums, etc.

• examples/transform/observe.tcl

• examples/transform/counter.tcl

• examples/transform/adler32.tcl [25]

3. Similar to the last item, do not perform modifications,
but limit how much data is let through it. I.e. let the
transformation introduce an artificial end-of-file signal
via the result returned by method “limit?”. This can
be based on size, patterns in the data, externals sig-
nals, etc.

• examples/transform/limitsize.tcl

Beyond this we have the choice among a vast richness of
algorithms which actually change the data going through the
transformation, giving truth to the name, some of which are
listed below, as general categories, and a few more specific
examples in the categories.

1. Encodings.

For example transfer encodings like base64 (RFC 4648
[6]), uuencode, ascii85, but also character encodings.
Tcl’s IO system handles these usually on its own, but
there may be situations where it makes sense to do
this deeper, in a transformation.

• examples/transform/base64.tcl

2. Encryption.

Lots of specific algorithms are possible in this category.
Tcllib [14] for example provides implementations of
DES, AES, Blowfish, and RC4.

Other sources of encryption algorithms to wrap in trans-
formations are OpenSSL [22], either directly, or indi-
rectly through TLS 4 [15], and Steve Lander’s Cryp-
tKit [23] for CryptLib [24].

To keep the code accompanying the paper relatively
self-contained our example is the one-time-pad. It sim-
ply xors the data flowing through it with the key bytes
it takes from two other channels (One per direction,
read and write).

• examples/transform/otp.tcl

3. Compression.

A nice example for this is zlib, which is also part of Tcl
8.6 as per TIP 234 [3]. The transformation support the
TIP specifies is implemented at the C-level, however
we can implement a simpler form5 as reflection using
the stream API.

• examples/transform/zlib.tcl

This transformation also shows us another limitation
of the transformation system, actually of the whole IO
system.

To perform packet- or message-based compression it is
necessary to pop and re-push the transformation after
every packet/message to properly flush the compressed
data to the underlying channel. This causes us to lose
the whole compressor state, and reducing the effective-
ness of the compressor. This despite the fact that the
zlib library supports an API through which it can be
forced to flush partially compressed data without los-
ing its state. Compression effectiveness is reduced in
that mode too, but not as severely as caused by a full
restart.

4While its functionality is implemented as a C-level trans-
formation, it might make sense to re-implement it as a re-
flected transformation, with the (possibly event-driven) ini-
tial key and cipher negotiation parts separated from the ac-
tual transformation.
5The C implementation in the core provides additional data
useful to scripts, like the crc, the gzip header data, etc.

81

Without going into the full details (which can be found
in the comments at [8]), the main problem is that
drivers do not have information about flushes performed
by the user, they only see a series of write requests.
This prevents any special behavior we might wish to
perform on a flush, like for zlib above.

4. Error correction.

An example for this category, albeit implemented at
the C-level, is Trf’s Reed-Solomon Coder command
([rs ecc]).

5. Chunking.

The example transformation inserts and removes a con-
figurable string every n characters, again configurable.

• examples/transform/spacer.tcl

Pat Thoyts is using them in his work on the core’s http
package to transparently handle HTTP’s chunked data
transfer mode.

5.3 File Transfer Example
This section describes a larger example which brings most

of the channels and transformations discussed in the pre-
vious two sections together into a toy application for the
“secure” transfer of files.

The core of the sender part can be seen in figure 6. A
[fcopy] command moves the contents of a “string” channel
into a socket which sends it to some receiver. This transfer is
secured by a “one-time-pad” transformation (OTP) pushed
on the socket and encrypting the data. The key bytes for the
OTP are read from an instance of the “random” base chan-
nel type. Transmitter and receiver do a toy key exchange
protocol6 first, ensuring the identical initialization of their
“random” channels. This is not part of the transforms, and
thus not shown in the figure either.

OTP

SocketfcopyString

Random

Figure 6: Transmitter core

The receiver, seen in figure 7, simply operates in reverse,
and uses a “variable” channel to store the incoming text.

OTP

Socket

Random

fcopy Variable

Figure 7: Receiver core

Now, as we not only wish to perform the transfer in our
demonstration, but also see the operation of the internals
“observer” transformations are added at strategic points,
feeding “textwindow” channels visibly logging the bytes. As

6This is why the application is a only a toy. In a real ap-
plication something like Diffie-Hellman [26] would be used
instead. Even better would be the use of TLS/SSL instead
of inventing their own crypto.

the deeper layers carry binary data additional “hex” and
“spacer” transformations are used to format the data into
something more legible.

The resulting transmitter can be seen in figure 8. The
extended receiver looks analogous.

Observe

Random

OTP

Observer

Socket

Observer

Observer

String fcopy

Hex

Spacer 2 { }

Spacer 48 \n

TextWin

TextWin

Hex

Spacer 2 { }

Spacer 48 \n

TextWin

Hex

Spacer 2 { }

Spacer 48 \n

TextWin

Figure 8: Extended transmitter core, with observers

Going back to the key exchange, while the actual proto-
col is a toy, the architecture used for it and its interaction
with the encryption transformation itself, or rather its ini-
tialization, is of general interest. The listing below shows
the relevant part of the code.

proc crypt {chan} {
set key [keyexchange $chan]

t c l : : t r a n s f o r m : : o t p $chan \
[t c l : : c han : : r andom $key] \
[t c l : : c han : : r andom $key]

}

proc keyexchange {chan} {
set myseed [t c l : : r andomseed]

puts $chan $myseed
flush $chan

set peer seed [gets $chan]
set key [t c l : : c omb in e \

$myseed \
$peerseed]

return $key
}

The main point in the code above is the existence of two
distinct phases.

The first is running outside of the transformation, actually
even before the transformation exists, i.e. is pushed. It ne-
gotiates all the configuration the transformation later needs.
Here this is just the key. In a proper protocol this would
also be stuff like the cipher to use, exchange and validation
of certificates, etc.

The second phase is the transformation itself, configured
with the data the first phase negotiated.

I alluded to this two-phase architecture already, in foot-
note 4 on how the TLS package could possibly be restruc-
tured.

82

Note that while in this example the negotiation is done
synchronously (-blocking 1) this could be done in an event-
driven manner as well.

6. CLOSING THOUGHTS
We have demonstrated the usefulness of reflected and trans-

formed channels in a variety of ways, and hopefully also
managed to get the reader thinking about there these fea-
tures of the core could be useful to them.

We have also shown that there a still problem zones, in
the area of IO alone (See the issue with partial flushing of
zlib), and in the intersection of IO and encodings (See the
textwindow multi-byte conversion problems).

Another problem was getting used to TclOO [11]. The
main problem with it was not its usability in general, that
is quite fine. However, it currently does not have a package
for processing options as nice as provided by snit [13] with
its standard/custom accessors, validation types, delegation,
etc. The example transformations suffer from that, as they
either use positional arguments, i.e. do not use options at
all, or only have very primitive processing without validating
anything.

APPENDIX

A. REFERENCES
[1] Andreas Kupries, TIP 219, Tcl Channel Reflection

API. http://tip.tcl.tk/219 , Sep 2004

[2] Andreas Kupries, TIP 230, Tcl Channel
Transformation Reflection API.
http://tip.tcl.tk/230 , Nov 2004

[3] Pascal Scheffers, TIP 234, Add Support for Zlib
Compression. http://tip.tcl.tk/234 , Dec 2004

[4] Pat Thoyts, TIP 317, Extend binary Ensemble with
Binary Encodings. http://tip.tcl.tk/317 , May
2008

[5] Bryan Oakley, Read-Only Text Megawidget with
TclOO. http://wiki.tcl.tk/22036

[6] Simon Josefsson, RFC 4648, The Base16, Base32, and
Base64 Data Encodings.
http://www.ietf.org/rfc/rfc4648.txt

[7] Andreas Kupries, Donal Fellows, refchan - Command
handler API of reflected channels, version 1. http:
//www.tcl.tk/man/tcl8.5/TclCmd/refchan.htm

[8] Andreas Kupries Flushing doesn’t work on stacked
channel. https://sourceforge.net/support/
tracker.php?aid=1785438

[9] Andreas Kupries, gIOT package.
http://www.purl.org/net/akupries/soft/giot

[10] Andreas Kupries, Memchan package.
http://memchan.sf.net

[11] Donal Fellows, Tcl Core Source Repository.
http://tcl.sf.net

[12] John Ousterhout and others, Tcl Core Source
Repository. http://tcl.sf.net

[13] Will Duquette, snit package.
http://tcllib.sourceforge.net/doc/snit.html

http://tcllib.sf.net

[14] Multiple Tcllib Bundle of Packages.
http://tcllib.sf.net

[15] Matt Newman, Jeff Hobbs, Dan Razell, TLS package.
http://tls.sf.net

[16] Andreas Kupries, Trf package. http://tcltrf.sf.net
http://www.purl.org/net/akupries/soft/trf

[17] Andreas Kupries, TrfCrypt package.
http://www.purl.org/net/akupries/soft/trfcrypt

[18] Colin McCormack, Wub Web Server.
http://code.google.com/p/wub/

[19] Andreas Kupries, The “transform” command in Trf.
http://www.purl.org/net/akupries/soft/trf/trf_

transform.html

[20] Andreas Kupries, Seeking in Trf. http://www.purl.
org/net/akupries/soft/trf/trf_seek.html

[21] Colin McCormack, Wub Chan Code. http:
//wub.googlecode.com/svn/trunk/Wub/Chan.tcl

[22] Multiple, OpenSSL. http://www.openssl.org

[23] Steve Landers et al., CryptKit.
http://wiki.tcl.tk/13191

[24] Peter Gutmann et al., CryptLib. http:
//www.cs.auckland.ac.nz/~pgut001/cryptlib/

[25] Mark Adler, Adler-32 checksum,
http://en.wikipedia.org/wiki/Adler-32

[26] Whitfield Diffie, Martin Hellman Diffie-Hellman key
exchange. http://en.wikipedia.org/wiki/
Diffie-Hellman_key_exchange

83

84

