
Networked Digital Whiteboard with Handwritten-Symbol Interpreter and
Dynamic-Display-Object Creator

Atsuhide Kobashi
Henry M. Gunn High School

Palo Alto, California

Abstract

We present a unique Tcl/Tk-based whiteboard system
that facilitates discussions among multiple participants lo-
cated at remote sites as well as in classroom or conference-
room setups. One of its uniquenesses is its capability to con-
vert handwritten complex-structured math/scientific sym-
bols to clean custom-font-based presentations. Another
uniqueness is that it enables the user to easily create dy-
namic discussion tools incorporating various widgets in-
stantly during a discussion, and send them to the white-
board server for display and manipulation. The above fea-
tures can be easily augmented to fit various domains of dis-
cussion by adding more Tcl scripts and/or C modules. All
of these unique capabilities are made possible by Tcl’s easy
mergeability with C and its superb scripting characteristics.

1. Overview

We often felt a need to have a whiteboard-like presen-

tation tool that facilitates easy two-way interactions on the

projected screen among all the participants in a room. Con-

ventional presentation tools are designed to only facilitate

one-way information flow from the presenter to the audi-

ence. We created our new whiteboard to break this limi-

tation and to enable all the participants in a classroom or

convention hall to print characters, draw figures, show im-

ages, and even display widgets to manipulate on the pro-

jected common display.

Although initially our goal was to create a two-way pre-

sentation tool for classroom and conference setups, we fur-

ther enhanced our system to a full-fledged networked white-

board so that it enables any remote networked party to view

the whole whiteboard on their own display and participate

in the two-way whiteboard-based discussion.

The system is built upon Tcl’s well-designed and easy-

to-use network tools. As delineated in Figure 1, the pre-

senter and the participants are connected by a network.

Client

(Participant)

Client

(Participant)

Client

(Participant)

Server

(Presenter)

Update

Add Objects

Header

Following
Data

(ASCII)

(Binary)

Figure 1. Networked Presentation Scheme

The particpants can augment the presenter’s screen with

widgets, texts, or other materials to expand the discus-

sion. Once a new addition has been made to the presen-

ter’s screen, the server will update each of the participants’

screens to reflect the newest state of the discussion.

These interactions between the participants and the pre-

senter require multiple types of data to be sent over the net-

work, including ASCII and binary data. In order to effi-

ciently transfer such information, we are attaching headers

as shown in Figure 1, to indicate the types, lengths, and han-

dling methods for the data, just like many network trans-

action schemes such as TCP/IP [4], although our header’s

descriptions are of a higher level than those underlying net-

work schemes.

The whiteboard also takes advantage of Tcl’s unique and

powerful multiple interpreter capability [5] to safely allow

15



multiple participants to display characters, images, and wid-

gets on the common whiteboard without interfering with the

other participants actions.

The objects transmitted through the network are Tcl

scripts and their accompanying data which create displayed

objects on the whiteboard being interpreted by each Tcl in-

terpreter. The transmission of the dynamically created wid-

gets by the Widget Creator (See Figure 6) is achieved, as

explained below, by sending only the data given in the Wid-

get Creator, without sending a Tcl script.

Our new whiteboard has two unique capabilities that

enhance the contents of the whiteboard beyond any con-

ventional whiteboard’s: Handwritten symbol interpreta-

tion/conversion and dynamic-display-object creation. One

of the functionalities we felt necessary while conducting

discussions on mathematics and scientific subjects with

conventional presentation tools is the capability to create

special complex symbol structures quickly and easily dur-

ing a presentation. Examples of such complex 2-D layout

symbol structures include sigma, integral of calculus, limit,

etc. which have many parts laid out in a 2-D area. Their

structures can be more complex than what the usual word

processors’ templates can handle.

To solve this problem, we developed a module that is ca-

pable of converting handwritten (by mouse or pen tablet)

special symbols to custom-font-based clean printings, as

handwriting is the quickest and easiest way of specifying a

symbol structure. Moreover, every part of the created clean

printings is easily relocatable to fit any special layout need.

Another feature that we developed and is currently non-

existent in any other presentation tool we know of, is the

ability to quickly and easily add dynamically manipulable

objects to the whiteboard during a discussion. Our new

whiteboard enables the participants to send a set of widgets

that other users can operate on the whiteboard, to generate

dynamic results. They can create these widgets via a Tk-

based GUI. For example, the user can send a graph linked

to a formula whose variables can be adjusted with spinners.

The generated dynamic results are displayed as the updated

graph in the widget which the user added to the common

presentation screen.

Our system is written mostly in Tcl and only those mod-

ules which need high speed processing (e.g. handwritten

symbol interpretation) are written in C and embedded [3]

in the system by taking advantage of the Tcl’s easy merge-

ability with C modules. Unlike monolithic systems such as

Word and OpenOffice, our system can easily be augmented

to fit the users’ various needs by taking advantage of Tcl’s

easy scripting and incremental augmentability. For exam-

ple, the special mathematical/scientific symbol interpreter

can be enhanced by adding more C modules to add more

interpretable symbols. The dynamic-display-object creator

can also be easily augmented by adding more Tcl script

Figure 3. Master Controller

templates.

2. Operation

In this section, we present the functionality and usage of

each of the system’s accompanying tools.

Figure 2 displays the presenter’s (server) whiteboard

augmented with widgets and texts which convey the ideas

of both the presenter and several other participants. The

background with the large graph is the original form of the

screen presented by the presenter, to which the participants

are responding by adding objects which they created dur-

ing the discussion. All participants can transmit their ideas

via direct embedding of text, as displayed by the red com-

ments around the graph in this example. Our system also

provides participants with the capability to send and insert

widgets onto the presenter’s whiteboard, as exemplified by

the embedded windows titled with the participants’ names

and target IDs. (The target IDs are used when spinboxes are

linked to the widgets to identify the connected widgets.)

The fundamental tool for the presenter is the the Mas-

ter Controller shown in Figure 3. This tool provides the

presenter with the ability to communicate with the partici-

pants through the communication windows, and control the

discussion by changing the displayed page on the screen.

The presenter can advance/backup the page one by one at

each press of the big arrows, or jump to a remote page us-

ing the spinner arrows in the spinbox. The communication

windows allow the presenter to quickly converse with select

participants in a troubleshooting or moderating role. While

this may be unnecessary in small conference or classroom

setups, it is particularly convenient when holding discus-

sions with remote participants. The presenter’s messages

can be addressed to a select participant, but the conversa-

tion can be viewed by all parties. Each participant also has

a similar tool to this Master Controller, albeit without sev-

eral capabilities including updating and selecting pages.

16



Figure 2. Presentation Screen

Figure 4 displays the Draw/Write Tool available to all

participants as well as the presenter. It provides the func-

tionality for creating both graphic and text objects, includ-

ing the capability to create complex symbols from hand-

writing. From left to right, the top row of buttons provides

the standard capabilities for drawing rectangles, ovals, and

lines, free-hand drawing, inserting texts, and erasing. The

”Hand Write” button opens a new ”Write” window (Fig-

ure 5) in which the user can draw complex symbol struc-

tures to be converted into a clean font. Once the handwrit-

ing is completed, the user can press the Convert button to

print a clean form of the symbol at a position designated by

a previous mouse click.

The Widget Creator tool shown in Figure 6, enables the

user to create three types of widgets: texts, canvases, and

spinboxes. Dimensions can be specificed for text and can-

17



Figure 4. Draw/Write Tool

Figure 5. Handwriting Entry Window

vas widgets. The canvas type has the option of a Scroll

Region which the user can set by inputting four coordi-

nates: Xmin, Ymin, Xmax, Ymax. The user can also deter-

mine the contents of the text or canvas widget by selecting a

pre-made content they prepared beforehand, such as graphs,

charts, images, text or a combination of them. The user can

also create the contents on the spot, using the Draw/Write

Tool. Participants can attach spinboxes to accompany these

charts/graphs, such that the values of certain variables can

be dynamically altered and the results of the updated values

are reflected on the graphs/charts displayed in the widgets.

3. Underlying Mechanism

For the network communication we took advantage of

the Tcl’s well designed networking tools for a quick and

easy development. They are far easier to handle than their

C-based counterparts. For this purpose we used the Tcl

commands such as socket, fconfigure, fileevent, and read.

These commands aided in the smooth setup of a server-

client configuration on which our system is build upon.

Although the forms of the data that is sent over our net-

work are of a higher level than those of the underlying

networking schemes, we need to handle multiple types of

data with different objectives. The data types constitute of

Tcl scripts, other ASCII data (dynamically created widgets’

specification transmitted from the Widget Creator, contents

of text widgets) and binary data (images). For efficient

handling of these multiple types of data, we used a header

that contains detailed information on the data following the

header. The header provide the information on the type,

length, and handling method for the data in connection to

Figure 6. Widget Creator

the related Tcl scripts. This strategy helps optimizes the

efficiency of the data transmission through the network.

One of our unique capabilities of sending dynamically

created widgets, is efficiently accomplished through the

transmission of only the necessary data, instead of entire

Tcl scripts for creating the widget. These data include spec-

ifications such as color, dimensions, and contents, which are

inputted by the user through the Widget Creator tool. This

scheme is made possible because the presenter’s (server)

side is designed with the capability of creating and embed-

ding entirely new widgets with only these specifications.

This strategy substantially reduces the network traffic as

compared with sending Tcl scripts, and provides a smoother

interaction between the participants. The same strategy is

used when the clients’ screens are updated by the presenter.

The algorithms utilized in our hand-written symbol and

structure interpreter are highly complex and were derived

from papers and other sources on computer vision. Through

this development process, we learned that even at the fore-

front of computer vision research, there is no perfect inter-

preter for the types of complex symbols we require. Also, as

18



a result of the high computation load involved in this inter-

pretation process, we wrote the processing modules for this

task in C. This modular system provided us with speed as

well as easy augmentability, as discussed earlier. The true

value of this interpreter surfaces in situations requiring spe-

cial symbols unavailable in most fonts, or complex nesting

which cannot be accomplished by most word processors.

Currently, the fonts for these successfully converted sym-

bols are generated by Tex.

As for the handwritten symbol interpreters, we found

that there are plenty of algorithms available for our pur-

poses [1, 2]. They are generally very sophisticated and re-

quire high computing power. However, we learned during

the development of this system that there is no handwrit-

ten symbol interpreter as good or near a human’s capability

even at the forefront of the computer vision research. There-

fore, we still claim the state of our system with respect to

this capability as “still under development”.

For the set of symbols that are selected for the current

version of our system, the clean fonts to which the hand-

written symbols are to be converted, are results created by

Tex. In the future, once we try to handle symbols unavail-

able even from Tex, we will need to create fonts by our-

selves.

All of our system’s GUI as well as the dynamic widget

creation functions provided to the user through the Wid-

get Creator are implemented in Tk. We took advantage

of Tk’s easy programming characteristic and abundant fea-

tures and functionalities, to develop the robust user inter-

face for our system. Other advantages of Tk are that the

code is light weight relative to the functions it can perform

and the scripts are human readable which enables easy in-

spection by the developer. These characteristics make Tk a

perfect choice for the transmission of graphic objects, espe-

cially dyamically created ones. Furthermore, Tcl provides

the valuable functionality of multiple interpreter capability,

to our endeavor, as each client’s input onto the presenter’s

screen can be processed in independent slave interpreters,

so as not to interfere with other parties’ operations.

4. Problems and Future Plan
As mentioned earlier, our handwriting interpreter is still

under development and its capabilities are currently limited

to interpreting the mathematical symbols of sigma for sum-

mation, integration (simple integral and integral with cir-

cles), and pi for consecutive products. However, we plan to

expand this capability to accommodate the interpretation of

a variety of other symbols. We are also planning to exper-

iment with other algorithms for the handwriting interpreta-

tion, as there are many more that we have not tried.

Currently, our system when running multiple slave inter-

preters is susceptible to occasional freezes due to large de-

mands for the CPU time from one interpreter. Therefore, for

smooth operation when running multiple interpreters, we

are planning on using a thread extension to Tk. We expect

that the use of such extension will prevent the occasional

freezes caused by the hogging of the CPU time by some

particular interpreters.

In our current system, the page-changing capability is

limited to the presenter, and it is not possible for any of the

clients to advance pages on their own screens. However, we

plan to improve this and make page advancement possible

for the client’s side as well, while still maintaining the page

number currently displayed on the presenter’s screen. This

will provide participants with more freedom to look back

as their needs entail, while enabling them to return to the

current page at any time.

Overall, our new whiteboard has turned out to be a

unique display of the strengths of the Tcl/Tk language. It

combines the language’s easy embeddability of C modules,

simple scripting syntax, and multiple interpreter capabil-

ity into a useful networked digital whiteboard system. Al-

though due to its short development period, it still lacks re-

finement in the ease of operation and GUI design, we be-

lieve that further development including the above enhance-

ments, will make this software a convenient and valuable

application in various fields of business and research.

References
[1] W. Confer and R. Chapman. Handwritten character

recognition for cheap, 2002. 5

[2] S. Jaeger, S. Manke, and A. Waibel. Npen++: An on-

line handwriting recognition system. In in 7th Interna-
tional Workshop on Frontiers in Handwriting Recogni-
tion, pages 249–260, 2000. 5

[3] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-

Wesley Publishing Company, 1994. 2

[4] L. L. Peterson and B. S. Davie. Computer Networks:
A Systems Approach. Morgan Kaufmann Publishers,

second edition, 2000. 1

[5] B. Welch, K. Jones, and J. Hobbs. Practical program-
ming in Tcl and Tk (4th ed.). Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2003. 1

19



20


