
rTcl Database Connectivity
Kevin B. Kenny

GE Global Research
kennykb@research.ge.com

Abstract
Tcl Database Connectivity is a newly-approved interface in the Tcl Core as of release
8.6. It fills the need – expressed over many years – of a uniform interface to Tcl for
SQL databases. TDBC is built to exploit the latest features of 8.6, including its ob-
ject-oriented functionality. It is designed for close integration with Tcl; in particular,
it addresses such issues as immunity to SQL injection attacks, type mismatches be-
tween Tcl and SQL, and the presence of NULL columns without requiring either spe-
cial Tcl code to handle them. (It approaches everything with the attitude that it should
be more difficult to write insecure code than secure code, and that SQL should have
no impact on “everything is a string.”) It is the intent that TDBC should be one of
Tcl’s foundational components, so that database applications in Tcl can have the
same ubiquity as Tcl itself.

1 Introduction
Tcl has come under fire for its lack of a uni-
form interface to SQL databases. Other
scripting languages, for instance Perl with
its DBI module [Domi99], and Python with
the Python Database API [Lemb08] have
long had such common portable interfaces.
While Tcl has had no shortage of interfaces
to SQL databases, they have all been devel-
oped individually, and lack a common API.
Applications that are developed against one
database frequently need substantial modifi-
cations to run against another, and federated
database applications can be difficult to
build.

With the 8.6 release, Tcl adds a new TDBC
(Tcl Database Connectivity) library that
provides a starting point for addressing this
lack. This paper describes the basics of
TDBC’s design. Section 2 presents some
related work on which TDBC builds. Sec-
tion 3 describes the overall structure of
TDBC. Section 4 discusses some of TDBC’s
limitations, and gives the rationale for leav-
ing out certain features. Section 5 discusses
the work that an implementor must do to add

a new database to TDBC. Finally, Section 6
presents a vision for the applications that
TDBC will enable and lays out some of the
future work that will be needed in TDBC.

2 Background
Several attempts have been made in the past
to provide portable database interfaces in
Tcl. The earliest ones tried to layer atop Mi-
crosoft’s ODBC (Open Database Connec-
tivity) [ODBC08]. The most enduring of
these has been Roy Nurmi’s tclodbc package
[Nurm04]. This package allows for connec-
tion to a wide selection of popular databases.
It is somewhat limited (it doesn’t handle
Unicode text effectively, installation is prob-
lematic on non-Windows systems, and
ODBC performance leaves a lot to be de-
sired). Nevertheless, it has been widely used
to implement database applications.

The tclodbc package also pioneered the ob-
ject-based syntax for database access, in
which both connections and statements are
represented as Tcl commands. To a large
extent, tclodbc’s object structure inspires the
overall structure of TDBC.

rMichael Cleverly’s nstcl package [Clev04]
is another design that can be said to inspire
the design of TDBC. It consists of Tcl
wrappers around the native API’s of seven
popular databases, plus ODBC, so that a
program that deals with any of those inter-
faces faces a uniform API. It pioneered the
idea of adapting database APIs with pure-
Tcl drivers. Alas, it has languished in com-
parative obscurity, perhaps because of its
association with the ill-fated Ars Digita.

3 Design
Database interfaces are one area that fit well
with the ideas of object-based design. There
are multiple implementations of each basic
interface: “database,” “statement,” “result
set,” and so on; each implementation needs
to present a uniform interface to the calling
program. Having a family of base classes to
represent these interfaces, with specific im-
plementations inheriting from those base
classes, is a natural approach to such a de-
sign. Three base classes: tdbc::-
connection, tdbc::statement, and
tdbc::resultSet, present essentially
the entire script-facing interface of TDBC.

3.1 The ‘connection’ class
The tdbc::connection class represents
a connection to a database. Its most impor-
tant method is prepare, which prepares to
execute a SQL statement against the given
database:

set s [$connection prepare {
 select surname, given_name,
 phone_number
 from directory
 where surname = :name_sought
}]

The idea of preparing a statement may be
foreign to the users of some database inter-
faces. TDBC requires that all statements be

prepared.1 The reason for this requirement is
that it is the easiest way to guard against
SQL injection attacks. Interfaces that do not
support prepared statements must sanitize
database inputs to guard against such at-
tacks, and are constantly at risk. In particu-
lar, MySQL has been vulnerable to these
attacks, with its reliance on procedures like
mysql_real_escape_string to sani-
tize its inputs. Exploitable vulnerabilities
have been reported as recently as 2006
[MySq06].

TDBC’s approach is to avoid having the Tcl
code sanitize inputs. Rather, statements that
accept inputs from Tcl are parametrized. A
name in a statement beginning with a colon
(e.g., name_sought in the example above)
is a name of a Tcl variable that is expected
to appear in the calling scope at the time the
statement is executed. The database driver
will substitute its value in as a SQL value,
safely.

The colon appears instead of the dollar sign
both because names containing dollar signs
are valid identifiers in many SQL systems,
and because it provides a convenient ap-
proach to protecting certain fields from sub-
stitution while substituting others:

set s [$connection prepare “
 select $valuecolumn from $table
 where $keycolumn = :keyvalue
”]

The return value from the prepare method
is an object that follows the interface of
tdbc::statement, and allows the Tcl
code to act on the database.

Next in importance to the prepare method is
the transaction method, used to frame
an atomic action. It takes the form:

$connection transaction {script}

1 TDBC does have convenience procedures that pre-
pare a statement and execute it immediately; all
statements are still prepared behind the scenes.

rThe script is a Tcl script to execute atomi-
cally. If the script terminates normally (de-
fined as an ‘ok’ return, or a ‘break’, ‘con-
tinue’ or ‘return’ within the script), the
transaction is committed; otherwise it is
rolled back and hence has no effect on the
database. Code that cannot be structured
with this style of transaction may call the
begintransaction, commit, and
rollback methods directly at some ex-
pense in complexity.

In addition, a connection object implements
service methods that enumerate tables in the
database, columns in a table, and open
statements and result sets. There are also
service procedures to be discussed below, to
simplify the coding of certain common
cases.

3.2 The ‘statement’ class
The tdbc::statement object represents
a SQL statement that may accept parame-
ters. Its fundamental API is the execute
method:

set r [$statement execute]
or

set r [$statement execute $dict]

This method bundles the parameters of a
statement (the variables that appeared as
names preceded by colons), by substituting
them either from Tcl variables in the caller’s
scope, or from values in the dictionary pro-
vided. The return value is an object imple-
menting the interface of tdbc::-
resultset.

In addition, statements support service
methods to enumerate the result sets that
they have produced and the parameters that
the statements expect. Finally, statements
also support a paramtype method:

$statement paramtype name_sought \
 varchar 40 in

This method confronts an ugly reality that
several databases’ interfaces require that pa-
rameters in the calling program have types
that match the types of columns in the data-
base – but provide no means of introspecting
what the expected types are. Code that ex-
pects to operate against such databases must
therefore declare parameter types explicitly.
Fortunately, most databases will accept
character strings in place of parameters of
any type, so in most cases the paramtype
method is needed only for performance.

3.3 The ‘result set’ class
The two key methods for result sets are
nextdict and nextlist, either of
which stores a row in a variable provided by
the caller and returns 1 if successful or 0 if
no rows remain in the result set. For the
nextlist method, the row is returned as
a list of the columns’ values, in the order in
which they appeared in a SELECT state-
ment. NULL values are returned as empty
strings.

Using the empty string to represent a NULL
value is problematic, because a SQL NULL
represents an unknown or unspecified vari-
able, not any string. (The difference between
the empty string and NULL is analogous to
the difference between the statements, “Joe
Smith has no middle name,” and “I don’t
know what Joe Smith’s middle name (if he
has one) is.”) In many applications, for in-
stance report generators, the distinction is
irrelevant, since an empty string would be
printed for Joe’s middle name in either case.
Some programs, nevertheless, need to be
aware of the difference. Since all Tcl values
are strings, there is no value that can be used
to represent a NULL. This limitation has led
to at least one proposal [Harr04] to change
Tcl’s semantics to allow NULL as a special
value. Unfortunately for NULL‘s propo-
nents, the TCT’s judgment was that the ef-
fects of the semantic change were too com-

rplex and subtle to contemplate in an 8.x re-
lease.

Fortunately for users of NULL values, Tcl
provides several ways to represent that a
value does not exist. TDBC chooses to rep-
resent NULL’s with missing keys in diction-
aries. The nextdict method returns the
next row of a result set in this form. The
keys of the returned dictionary are column
names, and the values are column values.
NULL values are omitted from the diction-
ary.

This approach has a single remaining draw-
back over a direct representation of NULL,
in that the columns no longer appear in the
order that they appeared in the original
query (simply because the NULL’s are omit-
ted; dictionaries preserve the order of keys).
TDBC solves this problem by adding a
columns method to the result set object
that returns the list of columns in the origi-
nal order. The complexity of using a second
method is somewhat offset by the fact that
few applications will not know what col-

umns they expect. Most of these are applica-
tions that accept the input of ad hoc SQL
statements from a database administrator
and execute them without further analysis.

In addition to the nextdict, nextlist,
and columns methods, result set objects
provide a rowcount method to indicate the
number of rows affected by an INSERT,
DELETE or UPDATE statement (SELECT
statements may not have row counts avail-
able until all results have been processed).

3.4 Putting it all together: our
first application

We now have enough pieces to write a sim-
ple application that uses TDBC. Figure 1
shows such an application. It behaves as you
might expect:

% tclsh86 phbook.tcl Flintstone
Flintstone, Fred 555-3733
Flintstone, Wilma 555-9456

open the database and prepare a statement
package require tdbc::sqlite3
tdbc::sqlite3::connection create db \
 [file join [file dirname [info script]] phonebook.db]
set s [db prepare {
 SELECT surname, given_name, phone_number
 FROM directory
 WHERE surname = :name
}]

apply the statement to each name on the command line and print results
foreach name $argv {
 set r [$s execute]
 while {[$r nextlist row]} {
 lassign $row surname given_name phone_number
 puts "$surname, $given_name $phone_number"
 }
 $r close
}
clean up resources
$s close
db close

Figure 1. A sample application using TDBC.

rpackage require tdbc::sqlite3
tdbc::sqlite3::connection create db \
 [file join [file dirname [info script]] phonebook.db]

foreach name $argv {
 db foreach -as lists row {
 SELECT surname, given_name, phone_number
 FROM directory
 WHERE surname = :name
 } {
 lassign $row surname given_name phone_number
 puts "$surname, $given_name $phone_number"
 }
db close

Figure 2. The sample application, revised to use the ‘foreach’ method

3.5 Convenience methods: ‘all-
rows’ and ‘foreach’

There are drawbacks to the way that our first
example application is structured. Chief
among these is that it would be quite cum-
bersome to rewrite it as a procedure that
would query the directory. In order to avoid
leaking result set or statement objects, the
code would have to be wrapped in several
layers of catch commands, each of which
would destroy an object and rethrow any
error. Even having to create and destroy
these objects is perhaps more code than we
would like to deal with.

For this reason, each of the database, state-
ment, and result set objects supports meth-
allrows method returns the rows resulting
from a query as a Tcl list, and the foreach
method applies a script to the rows resulting
from a query. Each method accepts addi-
tional arguments as appropriate, and prop-
erly manages the lifetime of any statement
and result set objects that have to be created
to fulfill the request. With the foreach
method, the example application can be
simplified as shown in Figure 2. Note that
the statement and result set are both main-
tained implicitly.

This simplification might give rise to the
question, “why isn’t the simplified way the

only way?” There are a couple of reasons.
First, it is possible to have result sets that are
large enough that it is inconvenient to hold
them in memory at once. (Tables with many
millions of rows are not unheard of.) Sec-
ond, and more important, is that Tcl is
commonly used as the glue that ties together
heterogeneous systems. It is easy to foresee
an application that (for example) posts up-
dates from a lightweight local database
(running, say, MySQL or SQLite) to an en-
terprise database running Oracle, Sybase, or
DB2, and needs to join tables in both. This
join would have to be done on the client
side. It is easy to foresee that such a join
would require external control of the itera-
tion.2 Finally, we may discover that using a
bytecoded loop like Tcl’s own while is
needed to get the best possible performance.

4 What doesn’t TDBC do?
Several features that were contemplated dur-
ing TDBC’s development (and were widely
requested) are left out of TDBC. Since what
the designers chose to omit is often as telling
as what they chose to include, it is perhaps
worthwhile to mention them here.

2 An alternative to external iteration might be to
package the database queries inside of coroutines
[SOFE08]. The design of TDBC predates a widely-
available reference implementation of Tcl coroutines.

rOne feature that was considered and rejected
was batched statements (variously called
also “bulk uploading”). This technique al-
lows a single call to the database to execute
an INSERT or UPDATE statement many
times, with different data for each statement.
It gives a performance advantage to code
that uses it to transfer large volumes of data.

Bulk uploading was rejected because not all
databases support it (although it would be
possible for drivers to simulate its behavior
by executing a statement repeatedly). The
databases that do support it impose different
restrictions on it (for instance, whether a
batch of changes can comprise only multiple
executions of the same statement or multiple
statements). Finally, mandating support for
batched statements imposes a complexity
requirement on drivers. Since TDBC’s goal
is to be ported easily to all popular data-
bases, it was decided that simplicity trumps
performance in this particular case. If there
is sufficient demand (and sufficient support
from database driver writers!), this decision
can, of course, be revisited.

Another feature that was considered and re-
jected was asynchronous queries–launching
a query against a database and executing a
callback as data arrives. Again, the factor
governing rejection was that not all the da-
tabases support it. It would be possible for a
driver to behave as if it were supported
(as(assuming a multithreaded build) by run-
ning the query in a separate thread and de-
livering the results by queuing the callback
in the requesting thread. But if the imple-
mentation is done this way, it saves the cli-
ent little programming effort to have asyn-
chronous queries as opposed to managing its
own threads. In fact, the current documenta-
tion for ODBC [ODBC08] explicitly depre-
cates the use of asynchronous statements in
favor of threading.

A final feature that was left out was “refer-
ence cursors”—explicit cursors returned

from stored procedures. The omission of this
feature (which would, of course, be mean-
ingful only on databases that support the
concept) was due primarily to the pragmatic
consideration of having a reasonably com-
plete implementation available for Tcl 8.6. If
a coherent specification can be devised, it
would be possible to add such a feature.

5 Developing TDBC drivers
A key design goal to TDBC was to make it
relatively easy to incorporate new databases.
In particular, it is critical to be able to proto-
type a new database interface in Tcl (assum-
ing that an existing Tcl interface, possibly
with different syntax and semantics, is
available) and then proceed to the C imple-
mentation. As a test of the concept, a pure-
Tcl driver for SQLite has been developed
and packaged with TDBC. The Tcl code for
the driver itself is a little less than 400 lines
of code (including copious comments),
something that a competent programmer can
do very quickly. The test suite is much
longer, something over 2500 lines of code,
but the test suite is also substantially port-
able among implementations. Fewer than
200 lines differ, for example, between the
SQLite3 and ODBC test suites.

What is needed for any database driver is
three new classes: one representing database
connections, one representing connections,
and one representing result sets.

5.1 The connection class
The connection class must inherit from
tdbc::connection, and implement the
following methods:

• A constructor. The constructor, as well
as doing whatever is needed to open the
connection, should set the instance vari-
able statementClass to the name of
the statement class (see below).

r• Methods, named tables and col-
umns, that introspect on the tables in a
database and the columns in a table.

• A preparecall method that prepares
calls to stored procedures (if applicable).

• Methods called begintransaction,
commit, and rollback that perform
the corresponding operations on the un-
derlying database.

The constructor should accept whatever ar-
guments are needed to specify the database
to open.

5.2 The statement class
The statement class must have a name that
matches the one supplied in the constructor
of the connection object. It must support the
methods:

• A constructor, which accepts the name
of the connection and the SQL statement
as parameters. The constructor must set
an instance variable, resultSet-
Class, to the name of the class that will
represent result sets (see below). It must
also prepare the statement at least to the
point where its parameters can be identi-
fied. To aid in this task, a command,
tdbc::tokenize, is exported from
the tdbc package. Given the SQL
statement, this command returns a list of
tokens, identifying the ones requiring
substitution.

• A params method that returns the list
of parameter descriptions for the pre-
pared statement.

• A paramtype method that declares the
type of a parameter. (It is permissible for
this method to do nothing if character
strings are appropriate for all parameters
presented to the underlying database.)

5.3 The result set class
The result set class, whose name must match
the name set by the statement class construc-
tor, should inherit from tdbc::result-

set. It must implement the following
methods:

• A constructor. The constructor accepts
as parameters the statement being exe-
cuted and the parameters presented to
the statement’s execute method. It is
responsible for launching the query pre-
pared by the statement’s constructor,
with parameters substituted appropri-
ately from variables in the caller’s con-
text. The result set constructor is by far
the most complex method in any of the
drivers yet attempted, since it is where
all the details of parameter transmission
and database control are buried.

• A columns method that returns the list
of columns in the result set.

• The nextlist and nextdict meth-
ods that return results as described in
Section 3.3.

• A rowcount method that returns the
count of rows affected by an INSERT,
UPDATE or DELETE statement.

5.4 Drivers in C
Obviously, a pure Tcl implementation is an
option only if an existing Tcl driver for a
database exists. One other alternative for
getting something running quickly is to use
an existing ODBC driver for the database,
and the TDBC-ODBC bridge. The TDBC-
ODBC bridge can also serve as a reference
for how to implement other TDBC drivers in
C. The same methods are required as for
drivers in Tcl. The class definitions are set
up in Tcl code, and other methods are added
to the classes from C initialization.

Proper attention to object lifetimes can make
developing the C code much easier. It turns
out that TDBC, together with the object-
oriented support in Tcl, make the lifetime
management fairly simple. A recommended
practice is to:

• Have reference counts for all the C
structures that represent database ob-

rjects. Manage these reference counts in
much the same way that Tcl_Obj refer-
ence counts are managed: increment
them when creating new pointers to
them, and decrement them when the
pointers go out of scope. When the ref-
erence count reaches zero, the corre-
sponding structure should be cleaned up.

• Each Tcl object should have attached
metadata that designates its C structure.
The deletion callback should decrement
the reference count (and possibly clean
up).

• Each C structure should also carry a
counted reference to the structure that
owns it. (A result set will designate the
owning statement, and a statement will
designate the owning connection.) This
reference, of course, should be removed
when the structure is cleaned up.

• If these conventions are followed, delet-
ing an object at any level in the hierar-
chy will do the right thing, pretty much
automatically. Tcl destructors will exe-
cute from top to bottom, and the refer-
ence counts on the corresponding C
structures will go to zero at the bottom
level first, causing them to shut down in
an orderly fashion from bottom to top.

Readers who need more detail than this
about C implementation are advised to con-
sult the source code for the TDBC-ODBC
bridge. A realistic estimate that a full C im-
plementation for a new database will require
about 300 lines of Tcl and 1000-4000 lines
of C, depending on the complexity of the
API. This scale is comparable with what is
present today in packages like mysqltcl,
oratcl, sybtcl, or tclodbc.

6 Future directions
The most pressing need for TDBC to be
widely supported is that it must connect to
all the popular databases. While bridging to
ODBC is a useful start, it is something of a
crutch. It would be better to have native

drivers to the databases’ C APIs or wire pro-
tocols. The author is trying to recruit driver
writers to broaden support for TDBC.

TDBC is, of course, only one piece of a
much larger puzzle. With a portable data-
base interface and the power of Tk, one can
imagine that Tcl/Tk could host a variety of
portable database administration tools (think
of PhpMyAdmin [DeLi04] or TOAD
[Scal03] without their known limitations in
dealing with multiple database engines),
GUI query designers (akin to Microsoft Ac-
cess), graphical query analyzers (like revj
[Toth08]), and so on. These could work in
federated systems with heterogeneous data-
bases, and could be useful for data mining,
synchronization, and enterprise integration.

Acknowledgments
The syntax for substituting values in SQL
queries was pioneered in the SQLite exten-
sion. D. Richard Hipp, the extension’s au-
thor, graciously contributed the SQL token-
izer that TDBC uses to parse this syntax.

Works Cited
[Clev04] Cleverly, Michael. “nstcl: Bringing

the best of AOLserver and OpenACS to
tclsh and wish.” Proc. 11th Ann. Tcl/Tk
Conf. New Orleans, October 2004.
http://www.tcl.tk/community/tcl2004/Tcl
2003papers/cleverly.htm

[Domi99] Dominus, Mark-Jason. “A Short
Guide to DBI: Perl's Database Interface
Module” perl.com. Sebastopol, Calif:
O’Reilly, October, 1999.
http://www.perl.com/pub/a/1999/10/DBI.
html

[DeLi04] DeLisle, Marc. Mastering
phpMyAdmin 2.11 for Effective MySQL
Management. Birmingham, England:
Packt Publishing Ltd, 2004. ISBN 1-
847194-18-3.

[Harr04] Harris, John H. “Null Handling.”
Tcl Improvement Proposal #185 (8 April
2004). http://tip.tcl.tk/185

r[Hipp08] Hipp, D. Richard. “The Tcl inter-
face to the SQLite library.”
http://www.sqlite.org/tclsqlite.html, last
updated 16 July 2008.

[Lemb08] Lemburg, Marc-André. “Python
Database API Specification v2.0.” Python
Enhancement Proposal #249.
http://www.python.org/dev/peps/pep-
0249/

[MySq06] MySQL AB. MySQL Reference
Manual, section E.1.7 (24 May 2006).
http://dev.mysql.com/doc/refman/5.0/en/n
ews-5-0-22.html

[Nurm04] Nurmi, Roy. “Tclodbc v. 2.3 Ref-
erence”. Last updated 20 March 2004;
available as part of the tclodbc distribu-

tion at
https://sourceforge.net/projects/tclodbc/

[ODBC08] ODBC Programmers’ Refer-
ence. Redmond, Wash.: Microsoft Corpo-
ration, 2008.
http://msdn.microsoft.com/en-
us/library/ms714177(VS.85).aspx

 [Scal03] Scalzo, Bert and Dan Hotka.
TOAD Handbook. Indianapolis: Sams
Publishing, 2003. ISBN 0672324865.

[Sofe08] Sofer, Miguel and Neil Madden.
“Coroutines.” Tcl Improvement Proposal
#328 (7 September 2008).
http://tip.tcl.tk/328

[Toth08] Toth, Alexandru. “Reverse Snow-
flake Joins.” http://revj.sourceforge.net/,
visited 29 September 2008.

