
Relation Oriented Programming with Raloo

What Happens When ::ral Meets ::oo?

Andrew Mangogna

15th Annual Tcl/Tk Conference
October 22-24, 2008

Copyright

Copyr ight 2008, by G. Andrew Mangogna. Per mission to copy and distribute this article by any
means is granted by the copyr ight holder provided the wor k is distributed in its entirety and this no-
tice appears on all copies.

Abstract

Raloo is an objected-oriented extension to Tcl that combines the relational data structur ing capa-
bility of TclRAL with an object-oriented programming style as provided by TclOO. This paper intro-
duces Raloo and describes how the capabilities of Raloo may be used to capture the semantics
of a software problem in a more declarative manner. Raloo suppor ts problem decomposition into
domains, with domains containing classes, relationships and domain functions. Both synchronous
processing and asynchronous processing via state machines are provided. The relationship of
Raloo to for mal software methods is also discussed.

Raloo 15th Annual Tcl/Tk Conf

1. Introduction

This paper is about Raloo, an object-or iented Tcl extension that combines the relational algebra
as implemented by TclRAL1 with object orientation provided by TclOO. The general term I apply
to this combination is relation-or iented programming which distinguishes it from the more familiar
object-or iented programming approach. Raloo solutions consist of three distinct projections of a
software problem: relationally structured data, finite state machines and object-oriented Tcl code.
The remainder of this section gives a brief overview of some background infor mation. The neces-
sity of space means that the overview is too brief. Next we follow some examples that show how
data is structured and how asynchronous event based processing is accomplished. Finally, we
discuss the relationship of Raloo with for mal software methods.

1.1. Relational Model of Data

The literature on the Relational Model of Data is vast. Because the Relational Model underlies
the view of Relational Database Management Systems (RDMS) and because of the commercial
impor tance of such systems, much research, refinement and for malization has been devoted to
the relational model in the years since Codd2 first developed it. Space limitations and more
immediate concerns allow only the briefest introduction to relational concepts.

In this paper we generally follow the for malization of the Relational Model as given by more recent
wr itings of Date3 and Darwen4. We are not concerned with Database Management Systems in
this paper. The Relational Model is a complete, coherent model of data and is not necessarily
dependent upon a database for its realization. Relations exist as logical entities outside of the
database arena. The properties of the Relational Model we are most interested in here are:

• A complete, consistent means to organize data for any problem.
• The close association between relations and predicate logic.
• A well for mulated algebra for evaluating expressions on relation values.
• The ability to specify functional relationships between relation var iables which include declara-

tive constraints on the cardinality of those relationships.

1.1.1. Relation Values

A relation value is defined as:

• A heading consisting of a set of distinctly named attributes. Each attribute is associated with a
data type.

• A body consisting of tuples that match the heading of the relation. Each attribute of the tuple
holds a value from the set of values defined by the data type of the attribute.

• At least one identifier5. An identifier is a subset (possibly improper) of the attributes of the
relation heading with the property that no two tuples in the relation body have the same values
for the attributes of the identifier and no subset of the identifier is also an identifier of the rela-
tion. The attr ibutes of an identifier may have a non-empty intersection with another identifier,
but may not be a subset of another identifier (i.e. at least one attribute must not be in com-
mon). It is common for relations to have only a single identifier consisting of a single attribute.

1 Both TclRAL and Raloo are free software and are available at http://sourceforge.net/projects/tclral.
2 Codd, E.F., A Relational Model of Data for Large Shared Data Banks, CACM 13, No. 6 (June 1970).
3Date, C.J., An Introduction to Database Systems, 8th Ed, Pearson, 2004, ISBN: 0-321-19784-4
4Date, C.J. and Hugh Darwen, Databases, Types, and the Relational Model: The Third Manifesto, Addison-Wesley,

2007, ISBN: 0-321-39942-0
5In database contexts, identifiers are usually referred to as keys or candidate keys and one of which may be consid-

ered a pr imary key. We prefer the term, identifier, as clearer and indicative of the role that is being satisfied.

Andrew Mangogna 1

Raloo 15th Annual Tcl/Tk Conf

1.1.2. Relation Variables

Since TclRAL supplies a native Tcl relation type, relation values may be stored in ordinary Tcl
variables and may be the result of command evaluation. It is important to distinguish between
relation values that may be held in ordinary Tcl var iables or may be inter mediate command
results and those that are held in special relation var iables or relvars. TclRAL allows the defini-
tion of relvars as distinct from ordinary Tcl var iables that happen to hold a relation value. The
reason for this distinction is that relvars allow declarative constraints to be placed upon them.
Raloo uses the relvars of TclRAL, by associating each Raloo class with a TclRAL relvar and
associating each relationship between classes with a TclRAL relvar constraint.

1.1.3. Tabular View of Relations

Frequently, relation values are displayed as tables. It is also possible to talk about relations using
tabular words such as columns and rows. There is no real problem in taking the tabular view of
relations as long as it is firmly understood that there is no inherent order in either the attributes or
tuples of a relation. Clear ly when a relation is displayed some order of presentation must be cho-
sen. The same is true of the implementation of a relation in a program. Computer memor y has a
natural order and storing a relation in computer memory will result in it being stored in some
order. But that order is a property of the implementation and not a property of the model of rela-
tions. So if we display a Dog relation as the table,

Name Breed Age
Buffy Poodle 3
Rover Retr iever 5

we must realize that the table,

Ag e Name Breed
5 Rover Retriever
3 Buffy Poodle

is a display of the same relation value. Indeed all the permutations of tuples and attribute orders
are different tabular views of the same relation value. The important point here is that access to a
tuple of a relation is only made via the value of the attributes and access to an attribute of a tuple
is only by the name of the attribute. This means of access to a tuple allows for data indepen-
dence, i.e. the programmed access is independent of the method used by the implementation to
store the data physically. It is sometimes tempting to think of a relation as some kind of super
array from which we can extract the third row or the second column. Resist that temptation. With
that war ning, we will use tabular notation in the rest of the paper, confident that the reader will
realize that a tabular representation of a relation is not unique and implies nothing about how the
elements of a relation are accessed.

1.1.4. Relations and Logic

There is a close association between relations and predicate logic.6 It is this close association
that allows us to interpret the contents of relation values as propositions about our subject. For
example, we inter pret the Dog table above to imply that there exists in our wor ld a Dog named
Rover, that is of the Retriever breed and is aged 5 years. This relation also states that there
exists a Dog named Buffy that is of the Poodle breed and is 3 years old. We insist that each tuple
of a relation be a tr ue proposition. This point of view allows us to view the relation as a predicate
with each tuple being a true proposition obtained by binding values to the attributes. Fur ther, we

6Date, C.J., Logic and Databases: The Roots of Relational Theory, Trafford, 2007, ISBN: 1-4251-2290-6

Andrew Mangogna 2

Raloo 15th Annual Tcl/Tk Conf

assume a closed world such that the value of a relation at any time contains “all and only those
tuples that correspond to true propositions.”7 This correspondence between predicate logic and
relations gives us the fundamental ability to construct a valid system of reasoning to evaluate
answers that are consistent with the logic of the problem as we have encoded it into relations.

1.2. Object Orientation

The subject of object oriented programming is also vast and the limited space here cannot do jus-
tice to the topic. Object oriented technology is particular ly useful as programs become larger and
more difficult to keep track of. The close association between data and its operations and the
emphasis on interfaces that remain constant greatly simply the task of dealing with large pro-
gramming projects. We will content ourselves here with summarizing those character istics of
object orientation that are most pertinent to Raloo.

Relatively recently the Tcl community decided to include object oriented constructs into the core
of the language. Before this, sev eral objected oriented extensions, both script and "C" based,
were used to achieve various for ms of object orientation. Indeed the var iety of different object ori-
ented approaches has been quite amazing to consider. Because of the ease by which Tcl can be
extended, several different object oriented approaches have been constructed and have accumu-
lated significant usage.

TclOO gives a well designed set of primitives upon which higher order object oriented extensions
may be built. Object or ientation in Tcl is usually associated with generating a different command
for each object. The first argument to object commands is taken as a method name and that
method is dispatched. The dispatched method has access to both the object data and any addi-
tional arguments to the method. Much of the complexity of object orientation in Tcl is in determin-
ing how the methods of an object are specified and resolved at run time to an actual code body.
Given the dynamic nature of Tcl, neither aspect of method dispatch need be static in time.

2. The Raloo Approach

Raloo takes a distinctly structured approach to solving software problems.

(1) The problem is divided into a set of Domains which represent coherent subject matters
contained in the problem. Domains interface to each other via as set of domain opera-
tions

(2) Each domain consists of a class model that is a relationally normalized schema consisting
of Classes and the Relationships between Classes.

(3) Certain classes may have a lifecycle that is defined as a Moore type state model associ-
ated with the class. Asynchronous processing is accomplished by the state models of the
active classes interacting with each other by sending events.

(4) The synchronous processing of state actions and other algorithmic type processing is
given by object oriented Tcl code.

In the sections below we will look at this approach using a simple example and show Raloo code
sequences that implement this approach.

3. Domains

As programs become larger, it becomes necessary just from human understandability considera-
tions to partition the problem into components. Raloo defines that component to be a domain.
A domain is intended to be its own wor ld with its own set of rules and policies that for ms a coher-
ent subject matter. In the end, that is a rather vague definition and the contents of a domain are

7Ibid., p. 99

Andrew Mangogna 3

Raloo 15th Annual Tcl/Tk Conf

tr uly an element of the design of the program. The design goal is to obtain domains with a con-
sistent level of abstraction and that are potentially reusable. Domains can also be associated with
the notion of cross-cutting concerns as is defined by aspect oriented programming.8

One intent of domain based design is to avoid the problems that functional decomposition often
yields by abstracting and factor ing common components to be used by the entire application. For
example, many industr ial control applications use a common means of dealing with exceptional
conditions, usually referred to as alar ms. Alar m policies and procedures can be quite extensive,
but the notion of an alarm and how it is handled can be described separately from the condition or
situation in the application that is considered exceptional.

We will not discuss domains further in this paper since the examples given are trivial enough not
to require extensive decomposition. However, keep in mind that any realistic application most
likely will need multiple domains to capture the distinct rules of its component parts.

4. Capturing Problems in Data

Taken together, a set of var iables with relation values (relvars) can be seen as fundamental state-
ment of the predicates of a program. But programs also must deal with the relationship between
data entities. Relations allow you to specify many of the rules and constraints of a problem in the
str ucture of the data. Fundamentally, the relationships between relvars are functions or partial
functions defining a set of associations between the relvars. We think of this as exploiting a
declarative approach to the structure of the program logic as contrasted with a more procedural
view of program design. The difference usually amounts to what is specified and controlled in
data and what is accounted for in the code of the program. What relational algebraic systems,
like TclRAL, represent is factor ing into common code a set of rules that allow you to specify in
data most of the real-wor ld rules that a program must enforce.

In this section we explore the three primar y ways to describe the relationships between data enti-
ties.

• Simple relationships.
• Generalization relationships.
• Associative relationships.

Finally, we get to see some Raloo code.

4.1. Simple Relationships

Let’s consider a small example about modern clothes washing machines. Here we are interested
in capturing a few facts about the way we make washing machines, namely:

• Every washing machine is identified by a ser ial number.
• Every washing machine is of some particular model.
• There are different models of washing machine.
• It the model of the washing machine that determines its properties.

The diagram below shows a graphic that represents these rules.9

8 http://en.wikipedia.org/wiki/Aspect-or iented_programming
9 There are many different graphical conventions in use for software ideas. Commonly, UML is used. I avoid it here

because UML has far too many graphical constructs and the extra cruft only serves to confuse the situation. In this ver y
simple graphical representation, rectangles represent classes with their attributes named inside. Relationship are repre-
sented by directed line segments with annotation for the name and cardinality of the relationship. Additional annotation
giving verb phrases to each direction of traversal of the relationship is also helpful in associating the relationship to the
problem semantics.

Andrew Mangogna 4

Raloo 15th Annual Tcl/Tk Conf

* Ser ialNo
ModelNo (R1)

Washing Machine
has its properties

specfied by

Capacity
* ModelNo
Washing Machine Modelproper ties of

specifies

R1+ 1

Figure 1. Washing Machine Models

We could also represent things as two tables and we have filled in some example rows.

Washing Machine
SerialNo ModelNo

AAC77753 WA1
AAC77996 WA1
BAC77893 WA2

Washing Machine Model
ModelNo Capacity

WA1 55
WA2 45

In Raloo we would code this situation as:

Andrew Mangogna 5

Raloo 15th Annual Tcl/Tk Conf

package require raloo
namespace import ::raloo::Domain

Domain create wmMgmt {
Class WashingMachine {

Attribute {
*SerialNo string
ModelNo string

}
}
Class WashingMachineModel {

Attribute {
*ModelNo string
Capacity int

}
}
Relationship R1 WashingMachine +-->1 WashingMachineModel

}

wmMgmt transaction {
WashingMachine insert SerialNo AAC77753 ModelNo WA1
WashingMachine insert SerialNo AAC77996 ModelNo WA1
WashingMachine insert SerialNo BAC77893 ModelNo WA2

WashingMachineModel insert ModelNo WA1 Capacity 55
WashingMachineModel insert ModelNo WA2 Capacity 45

}

Now, let’s look closely at this code sequence and see what is happening. We create a domain
called, wmMgmt, that contains two classes and one relationship. Since this is Tcl code, Domain
must be a command and its create subcommand will create a new domain as given by the next
argument. Indeed, Domain, is a TclOO class with its usual create method. The last argument is
a scr ipt that contains command invocations that define the contents of the domain.

In this case, we define two classes by invoking the Class command. The classes are named
WashingMachine and WashingMachineModel. The Class command takes two arguments, the
name of the class and a definition script that defines the properties of the class. Attr ibutes of a
class are defined by invoking the Attribute command. Attributes are given as a list of name/type
pairs. Type names are any valid Tcl data type with string being Tcl’s universal type. Attr ibute
names that begin with an asterisk (*) indicate that the attribute is an identifier. Every class must
have at least one identifier and an identifier may consist of more than one attribute. In the exam-
ple, both classes have only a single identifier that consists of only a single attribute. This is a
common occurrence. No two tuples in a relation may have the same values for their identifiers.
Remember, relations are sets and as sets do not have duplicate members.

The last command in the domain definition script for wmMgmt creates a relationship between the
WashingMachine and WashingMachineModel classes. The relationship is named R1. Any
str ing may be used to name a relationship, but long held convention uses the letter, R, followed by
a number. A relationship describes an association between classes. In the example, R1, states
that attributes in WashingMachine refer to identifying attributes in WashingMachineModel. In
this simple case since WashingMachineModel has only a single identifier and since the attribute
in WashingMachine that refers to WashingMachineModel has the same name as the single
identifying attribute, Raloo can figure this out and no additional specification of the referential

Andrew Mangogna 6

Raloo 15th Annual Tcl/Tk Conf

attr ibute mapping is required.

A relationship constrains the values that attributes may have. In the example, R1, states that for
ev ery tuple in WashingMachine, the value of WashingMachine.ModelNo must match the value of
exactly one tuple in WashingMachineModel. Conversely, for every tuple in WashingMa-
chineModel, the value of WashingMachineModel.ModelNo must match the value of ModelNo in
one or more tuples of WashingMachine. This is indicated by the use of "+" and "1" on the rela-
tionship specification.10 Notice particular ly how the R1 relationship precisely states a rule of the
problem, namely that individual washing machines are always of some model and every washing
machine model describes at least one washing machine. The relationship constrains the allowed
set of tuples in the two classes and Raloo enforces this constraint with no additional program-
ming. The simple declaration of the relationship gives Raloo sufficient knowledge to insure the
relationship constraints are not violated.

The last part of the example is a transaction where some instances are inserted into the classes.
At the end of the transaction commands, Raloo ev aluates the constraints imposed by the relation-
ships and insures that they are consistent. To see this in action, suppose we follow the above
scr ipt with:

wmMgmt transaction {
WashingMachine insert SerialNo BAC77899 ModelNo WA3

}

This command attempts to insert an instance of WashingMachine for which there is no corre-
sponding instance of WashingMachineModel and we get the following error message:

for association ::wmMgmt::R1(::wmMgmt::WashingMachine [+] ==> [1]\
::wmMgmt::WashingMachineModel), in relvar ::wmMgmt::WashingMachine
tuple {SerialNo BAC77897 ModelNo WA3} references no tuple

while executing
"relvar eval $script"

(class "::raloo::Domain" method "transaction" line 2)
invoked from within

"wmMgmt transaction {
WashingMachine insert SerialNo BAC77897 ModelNo WA3

}"

Which is a long winded way to say that there is no "WA3" washing machine model. Any process-
ing that affects the values of the class instances is done in the context of a transaction on the
class population and at the end of that transaction the constraints imposed by the relationships
must be consistent. If constraint checks fail, the data values are restored to what they were
before the transaction is executed. This is done without any additional code in the application.
Indeed that is the intent, namely to factor out the processing that can be inferred by declarative
statements such as the relationship definition.

The time evolution of a program can be viewed as moving the data values from one coherent
state to another. Processing affects the number of tuples in the classes and the values of
attr ibutes, but at the end of each processing transaction the data content of the classes must be
consistent with the rules defined by the relvar and relationship constraints.

10 The use of "1", "?", "*" and "+" to specify cardinalities of exactly one, at most one, zero or more and one or more,
respectively, is intended to be mnemonic of the usage of these characters in regular expression syntax.

Andrew Mangogna 7

Raloo 15th Annual Tcl/Tk Conf

4.2. Generalization Relationships

Some problem requirements are best described by placing strict categories on items. Stating that
some thing must be in some category is a for m of set partitioning.

Continuing with our example, suppose in our wor ld we wish to keep track of how our washing
machine models are used in production. After some time, we discontinue models in favor of new
designs, but we need to keep track of the old designs for reasons of maintenance of washing
machines we previously sold. We might show that graphically as:

ScheduledLife
* ModelNo (R2)
Current Model

DiscontinuedDate
* ModelNo (R2)
Discontinued Model

Capacity
* ModelNo
Washing Machine Model

R2

Figure 2. Washing Machine Model Types

In this graphic, Washing Machine Model is the super type and is related to two subtypes, Cur-
rent Model and Discontinued Model. The rules of this arrangement are that each tuple in each
of the subtypes must refer to exactly one tuple in the supertype and each tuple in the supertype
must be referred to by exactly one tuple in exactly one of the subtypes. This is equivalent to say-
ing that Washing Machine Model is completely partitioned into two disjoint subsets, Current
Model and Discontinued Model.

This type of relationship is called many things. Raloo uses the term, generalization. Unfor tu-
nately, there is some confusion surrounding this idea and the name, generalization. In UML
(sadly), a generalization relationship does not necessarily have to be complete and disjoint. This
relationship is also sometimes seen as an instance of inher itance. In our usage, there is no
inher itance, only set partitioning. Sometimes this arrangement is also equated to a set of one-to-
one relationships that are conditional with respect to the mapping of the supertype onto the sub-
types. Such an arrangement fails to enforce the complete aspect of the set partitioning.

Again, we may use tables to demonstrate this.

Washing Machine Model
ModelNo Capacity

WA1 55
WA2 45
WC1 30
WD2 45

Andrew Mangogna 8

Raloo 15th Annual Tcl/Tk Conf

Current Model
ModelNo ScheduledLife

WA1 24
WA2 36

Discontinued Model
ModelNo DiscontinuedDate

WC1 1July2007
WD2 1May2008

In Raloo, we capture the situation as:

Andrew Mangogna 9

Raloo 15th Annual Tcl/Tk Conf

package require raloo
namespace import ::raloo::Domain

Domain create wmMgmt {
Class WashingMachineModel {

Attribute {
*ModelNo string
Capacity int

}
}
Class CurrentModel {

Attribute {
*ModelNo string
ScheduledLife int

}
}
Class DiscontinuedModel {

Attribute {
*ModelNo string
DiscontinuedDate string

}
}
Generalization R2 WashingMachineModel {

SubType CurrentModel
SubType DiscontinuedModel

}
}

wmMgmt transaction {
WashingMachineModel insert ModelNo WA1 Capacity 55
WashingMachineModel insert ModelNo WA2 Capacity 45
WashingMachineModel insert ModelNo WC1 Capacity 30
WashingMachineModel insert ModelNo WD2 Capacity 45

CurrentModel insert ModelNo WA1 ScheduledLife 24
CurrentModel insert ModelNo WA2 ScheduledLife 36

DiscontinuedModel insert ModelNo WC1 DiscontinuedDate 1July2007
DiscontinuedModel insert ModelNo WD2 DiscontinuedDate 1May2008

}

In this code, three classes are defined. The WashingMachineModel class is the supertype and
the Generalization command defines the subtypes of WashingMachineModel to be Current-
Model and DiscontinuedModel. The generalization, R2, states that the instance of Washing-
MachineModel will be partitioned into two disjoint sets. Necessar ily, the sum of the number of
instances of the subtypes must equal the number of instances of the supertype.

If we try to add an unrelated supertype, such as in:

wmMgmt transaction {
WashingMachineModel insert ModelNo WD3 Capacity 50

}

we would be told:

Andrew Mangogna 10

Raloo 15th Annual Tcl/Tk Conf

for partition ::wmMgmt::R2(::wmMgmt::WashingMachineModel is partitioned
[::wmMgmt::CurrentModel | ::wmMgmt::DiscontinuedModel]),
in relvar ::wmMgmt::WashingMachineModel
tuple {ModelNo WD3 Capacity 50} is not referred to by any tuple

while executing
"relvar eval $script"

(class "::raloo::Domain" method "transaction" line 2)
invoked from within

"wmMgmt transaction {
WashingMachineModel insert ModelNo WD3 Capacity 50

}"

which tells that we have a super type instance that is not related to any subtype instance.

4.3. Associative Relationships

Continuing with our simple example, let us suppose that we are interested in tracking the features
that our washing machines have relative to their model. So for example, Model WA1 has sepa-
rate wash and rinse temperatures and an automatic timer whereas Model WA2 has a bleach dis-
penser but no timer. In general, a given model of washing machine has many features and multi-
ple models share many of the same features. We insist that a feature is not a feature unless it is
designed into at least one washing machine and that all washing machine models have one or
more features.

In this case we will require another class to capture these rules. Some associations between
classes require yet another class to mediate the association. These types of relationships are
called Associative Relationships. Associative classes arise in two distinct situations. In one case
the cardinality of the relationship requires that we have another class to hold all the necessary
referential attributes. In the other case, we define attributes that apply to the relationship itself
and therefore those attributes are properly included in the associative class and not in the partici-
pating classes.

Graphically, we represent this situation as:

Washing Machine Feature
* FeatureName

FeatureCostCapacity
* ModelNo
Washing Machine Model

* ModelNo (R3)
* FeatureName (R3)

Model Features

+

is described bydescr ibes

+ R3

Figure 3. Washing Machine Model Features

Andrew Mangogna 11

Raloo 15th Annual Tcl/Tk Conf

Again, we can have a tabular view with example rows.

Washing Machine Model
ModelNo Capacity

WA1 55
WA2 45

Washing Machine Feature
FeatureName Feature Cost

Dual Temp Control 20
Automatic Timer 45
Bleach Dispenser 15

Model Feature
ModelNo FeatureName

WA1 Dual Temp Control
WA1 Automatic Timer
WA2 Dual Temp Control
WA2 Bleach Dispenser

And the corresponding Raloo code is:

Andrew Mangogna 12

Raloo 15th Annual Tcl/Tk Conf

package require raloo
namespace import ::raloo::Domain

Domain create wmMgmt {
Class WashingMachineModel {

Attribute {
*ModelNo string
Capacity int

}
}
Class WashingMachineFeature {

Attribute {
*FeatureName string
FeatureCost int

}
}
Class ModelFeature {

Attribute {
*ModelNo string
*FeatureName string

}
}
AssocRelationship R3\

WashingMachineModel +--ModelFeature-->+ WashingMachineFeature
}

wmMgmt transaction {
WashingMachineModel insert ModelNo WA1 Capacity 55
WashingMachineModel insert ModelNo WA2 Capacity 45

WashingMachineFeature insert FeatureName "Dual Temp Control"\
FeatureCost 20

WashingMachineFeature insert FeatureName "Automatic Timer"\
FeatureCost 45

WashingMachineFeature insert FeatureName "Bleach Dispenser"\
FeatureCost 15

ModelFeature insert ModelNo WA1 FeatureName "Dual Temp Control"
ModelFeature insert ModelNo WA1 FeatureName "Automatic Timer"
ModelFeature insert ModelNo WA2 FeatureName "Dual Temp Control"
ModelFeature insert ModelNo WA2 FeatureName "Bleach Dispenser"

}

The only new constr uct in this code is the definition of R3 by using the AssocRelationship com-
mand. The syntax of the relationship cardinality is similar to before, but now the name of the
associative class is mentioned emphasizing its mediating role in implementing the relationship.
Note that the direction of the relationship is somewhat arbitrar y. It is the associative class that
holds the referential attributes and so the direction could have been chosen to be the opposite of
that given. Choose the relationship direction for associative relationships based on what makes
the semantics of the problem clearest. There is usually one direction that is semantically more
significant.

Raloo enforces the cardinality of associative relationships and since R3 is defined as many to
many and unconditional, there may not be any Washing Machine Models or Washing Machine

Andrew Mangogna 13

Raloo 15th Annual Tcl/Tk Conf

Features that are not related in some way. So, for example, if we attempt to add an unrelated
washing machine model such as:

wmMgmt transaction {
WashingMachineModel insert ModelNo WA7 Capacity 45

}

we will be given the error:

for correlation ::wmMgmt::R3(::wmMgmt::WashingMachineModel <== [+]
::wmMgmt::ModelFeature [+] ==> ::wmMgmt::WashingMachineFeature),
in relvar ::wmMgmt::WashingMachineModel

tuple {ModelNo WA7 Capacity 45} is not referenced by any tuple

while executing
"relvar eval $script"

(class "::raloo::Domain" method "transaction" line 2)
invoked from within

"wmMgmt transaction {
WashingMachineModel insert ModelNo WA7 Capacity 45

}"

which tells us that there was no instance of ModelFeature that referred to an instance of Wash-
ingMachineModel that is identified as WA7.

5. Lifecycle Behavior

The data of an application is only part of the story. Many classes of an application will exhibit
behavior that var ies over time. The var iations in behavior usually depend upon what has gone on
in the past. The natural means of modeling such behavior is via a state machine. Raloo sup-
por ts making any class active by associating a Moore type state machine with that class.11 Each
state has a body of code associated with it that is executed upon entry into the state.

To demonstrate we will continue in our washing machine example and look at a ver y simplified
version of how a washing machine might run a cycle to wash clothes. Our washing machine con-
sists of the familiar upright tub that is attached to a motor that can either agitate the tub back and
forth or spin the tub at high speed. In addition we have a pump to remove water from the tub and
a valve to allow water to flow into the tub. Also we have sensors that can detect when the tub is
full or empty. Clear ly, a real-wor ld automatic washing machine is much more sophisticated than
this simple model.

First we must encode the problem semantics in a class model.

11 There has been much discussion over which style of state machine, Moore or Mealy, is the best. Moore ma-
chines execute their actions upon entry into a state and therefore the actions are usually associated with the state itself.
Mealy machines execute their actions upon exit from a state and therefore the actions are usually associated with the
transition between states. It can be proven that they are equivalent in their expressive pow er so to some extent the pas-
sions of the debate are overblown. In the end, I prefer Moore machines because they yield simpler implementation data
str uctures and I prefer the direct association between state and processing.

Andrew Mangogna 14

Raloo 15th Annual Tcl/Tk Conf

* WMId (R1)
Pump

* WMId (R3)
Valve

Washing Machine
* WMId

WashTime
RinseTime
SpinTime

* WMId (R2)
Motor

1

1

R1

1

1 1

R3

1

R2

removes water from

moves the

controls the flow
of water for

tub for

Figure 4. Washing Machine Class Model

This model is ver y simple and just states that every washing machine has a pump, motor and
valve. Also there are no pumps, motors, or valves that are not attached to some washing
machine.12 The diagram below shows a state model for the washing machine cycle. The initial
state is Idle. Again the state model is overly simplistic for a real-wor ld situation. For example,
there is no way to stop a cycle once it has been started. Also, note that no pump is run while in
the spinning part of the cycle begging the question of where the extracted water is to go. After
the state model diagram we give the Raloo code.

12 Remember, the predicates represented by the relation var iables need only be true and not necessarily profound.
The fact that there are no pumps that are not somehow bound up in washing machines is blatantly obvious but still true
and allowing for the opposite to be true would indeed be strange for this problem. But relation var iable predicates should
also relevant to the problem. It is a common mistake to include items in a class model that are true from some point of
view but not particular ly relevant to the abstractions that motivate the solution of the problem at hand. Just because we
know that the motor in the washing machine is colored black does not mean we need a color attribute for motors.

Andrew Mangogna 15

Raloo 15th Annual Tcl/Tk Conf

2. Generate Open to Value.
1. Find the related Valve instance.
Filling For Washing

Agitating

3. Find the related Motor instance.

1. Find the related Valve Instance.
2. Generate Close to valve.

4. Generate Agitate to motor.
5. Generate Done to self delayed by

self.WashTime.

Spinning
1. Find the related Pump instance.
2. Generate Stop to pump.
3. Find the related Motor instance.
4. Generate Spin to motor.
5. Generate Done to self delayed by

self.SpinTime.

Idle
1. Find the related Motor instance.
2. Generate Stop to motor.

1. Find the related Motor instance.
2. Generate Stop to motor.
3. Find the related Pump instance.
4. Generate Run to pump.

Emptying Wash Water

1. Find the related Motor instance.
2. Generate Stop to motor.
3. Find the related Pump instance.
4. Generate Run to pump.

Emptying Rinse Water

Filling For Rinse

4. Generate Open to valve.

1. Find the related Pump instance.
2. Generate Stop to pump.
3. Find the related Valve instance.

Rinsing
1. Find the related Valve instance.
2. Generate Close to valve.
3. Find the related Motor instance.
4. Generate Agitate to motor.
5. Generate Done to self delayed by

self.RinseTime.

Run

Full

Done

Done

Empty

Done

Empty
Full

Figure 5. Washing Machine State Model

Andrew Mangogna 16

Raloo 15th Annual Tcl/Tk Conf

package require raloo
namespace import ::raloo::Domain

package require logger

Domain create washer {
Class WashingMachine {

Attribute {
*WMId int
WashTime int
RinseTime int
SpinTime int

}
Lifecycle {

State Idle {} {
set motor [my selectRelated ˜R2]
$motor generate Stop

}
State FillingForWashing {} {

set valve [my selectRelated ˜R3]
$valve generate Open

}
State Agitating {} {

set valve [my selectRelated ˜R3]
$valve generate Close
set motor [my selectRelated ˜R2]
$motor generate Agitate
my generateDelayed [expr {[my readAttr WashTime] * 1000}] Done

}
State EmptyingWashWater {} {

set motor [my selectRelated ˜R2]
$motor generate Stop
set pump [my selectRelated ˜R1]
$pump generate Run

}
State FillingForRinse {} {

set pump [my selectRelated ˜R1]
$pump generate Stop
set valve [my selectRelated ˜R3]
$valve generate Open

}
State Rinsing {} {

set valve [my selectRelated ˜R3]
$valve generate Close
set motor [my selectRelated ˜R2]
$motor generate Agitate
my generateDelayed [expr {[my readAttr RinseTime] * 1000}] Done

}
State EmptyingRinseWater {} {

set motor [my selectRelated ˜R2]
$motor generate Stop
set pump [my selectRelated ˜R1]
$pump generate Run

Andrew Mangogna 17

Raloo 15th Annual Tcl/Tk Conf

}
State Spinning {} {

set pump [my selectRelated ˜R1]
$pump generate Stop
set motor [my selectRelated ˜R2]
$motor generate Spin
my generateDelayed [expr {[my readAttr SpinTime] * 1000}] Done

}
Transition Idle - Run -> FillingForWashing
Transition FillingForWashing - Full -> Agitating
Transition Agitating - Done -> EmptyingWashWater
Transition EmptyingWashWater - Empty -> FillingForRinse
Transition FillingForRinse - Full -> Rinsing
Transition Rinsing - Done -> EmptyingRinseWater
Transition EmptyingRinseWater - Empty -> Spinning
Transition Spinning - Done -> Idle

}
}
Class Pump {

Attribute {
*WMId int

}
Lifecycle {

State Off {} {
log::debug "pump [my readAttr WMId] is off"

}
State Running {} {

log::debug "pump [my readAttr WMId] is running"
To s imulate the tub sensor, call the tub
empty after a second.
[my selectRelated R1] generateDelayed 1000 Empty

}
Transition Off - Run -> Running
Transition Running - Stop -> Off

}
}
Class Motor {

Attribute {
*WMId int

}
Lifecycle {

State Off {} {
log::debug "motor [my readAttr WMId] is off"

}
State Agitating {} {

log::debug "motor [my readAttr WMId] is agitating"
}
State Spinning {} {

log::debug "motor [my readAttr WMId] is spinning"
}
Transition Off - Agitate -> Agitating
Transition Agitating - Stop -> Off
Transition Off - Spin -> Spinning

Andrew Mangogna 18

Raloo 15th Annual Tcl/Tk Conf

Transition Spinning - Stop -> Off
}

}
Class Valve {

Attribute {
*WMId int

}
Lifecycle {

State Closed {} {
log::debug "valve [my readAttr WMId] is closed"

}
State Open {} {

log::debug "valve [my readAttr WMId] is open"
To s imulate the tub sensor, call the tub
f ull after a second.
[my selectRelated R3] generateDelayed 1000 Full

}
Transition Closed - Open -> Open
Transition Open - Close -> Closed

}
}
Relationship R1 Pump 1-->1 WashingMachine
Relationship R2 Motor 1-->1 WashingMachine
Relationship R3 Valve 1-->1 WashingMachine
A domain operation to kick things off
DomainOp run {wmid} {

set wm [WashingMachine selectOne WMId $wmid]
if {[$wm isnotempty]} {

$wm generate Run
}

}
}
Populate the domain with one washer
washer transaction {

Set ridiculously short times for testing.
WashingMachine insert WMId 1 WashTime 5 RinseTime 3 SpinTime 2
Pump insert WMId 1
Motor insert WMId 1
Valve insert WMId 1

}
logger::initNamespace ::washer debug
Run a cycle
washer run 1
Enter the event loop to run the state machine.
vwait forever

Executing this code will yield:

Andrew Mangogna 19

Raloo 15th Annual Tcl/Tk Conf

[Sun Sep 14 16:39:38 PDT 2008] [washer] [debug] ’valve 1 is open’
[Sun Sep 14 16:39:39 PDT 2008] [washer] [debug] ’valve 1 is closed’
[Sun Sep 14 16:39:39 PDT 2008] [washer] [debug] ’motor 1 is agitating’
[Sun Sep 14 16:39:44 PDT 2008] [washer] [debug] ’motor 1 is off’
[Sun Sep 14 16:39:44 PDT 2008] [washer] [debug] ’pump 1 is running’
[Sun Sep 14 16:39:45 PDT 2008] [washer] [debug] ’pump 1 is off’
[Sun Sep 14 16:39:45 PDT 2008] [washer] [debug] ’valve 1 is open’
[Sun Sep 14 16:39:46 PDT 2008] [washer] [debug] ’valve 1 is closed’
[Sun Sep 14 16:39:46 PDT 2008] [washer] [debug] ’motor 1 is agitating’
[Sun Sep 14 16:39:49 PDT 2008] [washer] [debug] ’motor 1 is off’
[Sun Sep 14 16:39:49 PDT 2008] [washer] [debug] ’pump 1 is running’
[Sun Sep 14 16:39:50 PDT 2008] [washer] [debug] ’pump 1 is off’
[Sun Sep 14 16:39:50 PDT 2008] [washer] [debug] ’motor 1 is spinning’
[Sun Sep 14 16:39:52 PDT 2008] [washer] [debug] ’motor 1 is off’

The new constr uct here is given by the Lifecycle command. This command associates a state
model with a class. The states are defined using a State command. Events in Raloo may carr y
parameters and those parameters are delivered to the state code as ordinary arguments. Hence
the State command has the same interface as proc. The Transition command defines the tran-
sitions between states. The arguments to Transition give the current state, the event that causes
the transition and the new state. Conceptually the code associated with the state is executed
when the state is entered. The two arguments, - and -> are required syntactic sugar.

The state action code is executed as a TclOO method on an instance reference object. Instance
reference objects are Raloo objects that reference one or more instances of a class (or equiva-
lently one or more tuples of a relation var iable). The idea of an instance reference is central to
the way that Raloo merges the ideas of relations with object oriented techniques. Objects of
Raloo classes are references to the tuples that are stored in a relvar that is associated with the
class. The cardinality of the instance references may be empty, one or many with one being the
most common case. There are a large number of methods available to instance reference
objects. In this example, we focus on only two:

(1) Finding a related instance by traversing a relationship.

(2) Generating an event to an instance.

The selectRelated method will find a related instance by traversing a relationship. The Idle state
uses the command

set motor [my selectRelated ˜R2]

to find the instance of motor that is associated with the instance of WashingMachine that is
executing the Idle action. The use of the tilde (˜) indicates that the relationship is traversed in the
reverse direction and is required here since the class diagram gives the forward direction of R2 as
from Motor to WashingMachine. A chain of traversals may be generated by simply giving addi-
tional relationship names to the selectRelated method.

The generate method causes an event to be generated to an instance. Thus, the Idle state after
finding the related motor using the selectRelated method generates the Stop ev ent to that motor
using:

$motor generate Stop

If the Stop ev ent carried any parameters, then they would be listed as additional arguments to the
generate method.

The state transitions that result from calls to the generate method are dispatched via the Tcl
ev ent loop. Raloo arranges for the event dispatch to happen as a callback scr ipt associated with
an invocation of the after command. Consequently, Raloo applications must enter the Tcl event
loop to cause the application to dispatch events, execute the state transitions and cause the state

Andrew Mangogna 20

Raloo 15th Annual Tcl/Tk Conf

actions to perfor m the application processing. Raloo itself does not enter the event loop. For Tk
based applications entering the event loop happens naturally, but for Tcl based applications invok-
ing the vwait command is required to cause the application to run. Thus, Raloo applications are
str uctured very much like Tk applications in the sense that after initialization, the remaining appli-
cation is executed as callbacks driven by events that are generated from interactions with the out-
side wor ld. This is ver y much in keeping with the Tcl event based style.

There are a few finer points wor th noting here. Because R2 is one-to-one and unconditional in its
cardinality, we know that the selectRelated method must yield an instance reference object that
refers to exactly one motor tuple.13 Otherwise, the data would be inconsistent and Raloo would
have thrown an error and rolled back any previous attempt to create such a population. So it is
not necessary to test that the motor variable actually refers to anything. Given that, clearly the
two statements of the Idle state could be written as a single statement with no motor variable
being defined. Compare this with the run domain operation that is defined to start the running of
a washing cycle. Here, the ID of the intended washing machine is given as an argument. The
selectOne method will look up the WashingMachine that matches that ID. But it is possible to
supply an ID that does not match any washing machine and therefore it is necessary to test if
selectOne actually found any matching instance of WashingMachine. This is easily accom-
plished by the isnotempty method.

6. Relation to Formal Software Methods

The ideas implemented in Raloo are not new or original. Raloo is a Tcl implementation of the
under lying execution semantics of a for mal software methodology called, Executable UML. 14 15

16 17 18 This methodology was originally developed by Sally Shlaer and Stephen Mellor in the late
1980’s to the early 1990’s and at that time was known as the Shlaer-Mellor method. The method-
ology combined the concepts of the relational model of data with the previous wor k of Mellor and
Ward19 in using state machines and data flow diagrams to model system behavior. Over time, the
graphical conventions of UML were adopted and to distinguish the particular character istics of
this approach, the name, Executable UML, was used. Executable UML is a proper profile of UML
that includes what early for ms of UML never had, namely, rigorous execution semantics.

From the beginning, Executable UML had a goal of specifying software systems in an implemen-
tation independent manner and translating20 the resulting models into the actual implementation.
Part of that translation process involves mapping the models onto a Software Architecture

13 Mathematically, R2 is a bijective function from the Motor set to the WashingMachine set and therefore always in-
vertible.

14 Shlaer, Sally and Stephen J. Mellor, Object Oriented Systems Analysis: Modeling the Wor ld in Data, Prentice-
Hall, 1988, ISBN: 0-13-629023-X

15 Shlaer, Sally and Stephen J. Mellor, Object Lifecycles: Modeling the Wor ld in States, Prentice-Hall, 1992, ISBN:
0-13-629940-7

16 Mellor, Stephen J. and Marc J. Balcer, Executable UML: A Foundation for Model Driven Architecture, Addison-
Wesley, 2002, ISBN: 0-201-74804-5

17 Raistr ick, Chris, Paul Francis, John Wright, Colin Carter and Ian Wilkie, Model Driven Architecture with Exe-
cutable UML, Cambr idge University Press, 2004, ISBN: 0-521-53771-1

18 Starr, Leon, How to Build Shlaer-Mellor Object Models, Yourdon Press, 1996, ISBN: 0-13-207663-2
19 Ward, Paul T. and Stephen J. Mellor, Str uctured Development for Real-Time Systems, Yourdon Press, Vol 1,

1985, ISBN: 0-917072-51-0, Vol 2, 1985, ISBN: 0-917072-52-9, Vol 3, 1986, ISBN: 0-917072-53-7
20 Indeed some practitioners use the name Executable and Translatable UML to distinguish the approach of me-

chanically generating the implementation since newer versions of UML do support a more rigorous set of execution se-
mantics.

Andrew Mangogna 21

Raloo 15th Annual Tcl/Tk Conf

Domain. The software architecture is the domain that controls the policies and mechanisms for
how data and execution are handled in the system. Raloo can be viewed as an Executable UML
software architecture implemented in Tcl where the domain interfaces correspond directly to the
execution semantics of Executable UML models.

But as we have already seen, Raloo can also be viewed as a Tcl object-oriented extension with-
out any reference to for mal software methods. The utility of Raloo as a programming approach
der ives from the coherent data structur ing capability provided by a rigorous relational algebra with
enforced referential integrity constraints, the support for declaring state models for asynchronous
processing associated with class lifecycles and the use of object-oriented Tcl code both to
declare the structure of the problem solution and to express the processing details of the algo-
rithms.

7. Acknowledg ements

The author wishes to acknowledge the help and guidance of his friends and colleagues that have
suffered through more than their share of talking about Raloo. Special thanks go to Paul Higham
for many coffee break discussions and for his clarity of thought and expression. Thanks also to
Leon Starr for always keep the focus on understanding and solving problems rather than running
computers.

Andrew Mangogna 22

Raloo 15th Annual Tcl/Tk Conf

Table of Contents

1 Introduction ... 1
1.1 Relational Model of Data ... 1
1.1.1 Relation Values ... 1
1.1.2 Relation Variables ... 2
1.1.3 Tabular View of Relations .. 2
1.1.4 Relations and Logic .. 2
1.2 Object Or ientation ... 3
2 The Raloo Approach ... 3
3 Domains .. 3
4 Captur ing Problems in Data .. 4
4.1 Simple Relationships .. 4
4.2 Generalization Relationships .. 8
4.3 Associative Relationships ... 11
5 Lifecycle Behavior ... 14
6 Relation to For mal Software Methods ... 21
7 Acknowledgements ... 22

Andrew Mangogna i

Raloo 15th Annual Tcl/Tk Conf

Table of Figures

1 Washing Machine Models ... 5
2 Washing Machine Model Types .. 8
3 Washing Machine Model Features .. 11
4 Washing Machine Class Model ... 15
5 Washing Machine State Model ... 16

Andrew Mangogna ii

