
mod_tcl : TCL inside the Apache web server 1

Abstract — mod_tcl is an apache httpd module that
allows TCL code to be executed inside the web server

during any of its phases whilst handling requests. This

tight integration makes possible many things over and

above simple page generation.

Version 1.0 of mod_tcl was released in 2002. Since

then, very little work has been done on the codebase

publically. However, some significant changes and

improvements have recently been made and it is this new

– yet to be published – version that is discussed in this

paper.

This paper will start by discussing how apache serves
requests and how mod_tcl integrates into its pipeline. It

will follow this with examples demonstrating some of the

more interesting things you can do with this

infrastructure; authentication handling, URL rewriting,

dynamic logging. Finally it will discuss the current state of

the mod_tcl codebase and future directions.

I. INTRODUCTION

The apache httpd web server is one of the wider
known and heavily used web servers available. It is an
extremely robust and production proven system for
serving all manner of web pages. One of its key benefits
is its module system which allows arbitrary code to hook
into a number of key points during the processing of a
request. Apache as standard comes with a large array
of available modules, from complex URL rewriting
infrastructures through custom authentication handlers
such as LDAP and, of course, custom renderers such as
CGI. In addition to these core modules, there is a large
body of contributed work available. Many of these
contributed modules include language bindings, allowing
code written in a scripting language (typically) to be
embedded into the request processing flow. All of the
popular scripting languages of today (TCL, Perl, Python,
PHP, Ruby, Lua) have at least one integration available.
In the case of TCL, there are three. Websh

[1]
and Rivet

[2]

are implementations of web frameworks; allowing a mix
of code and content to simplify the generation of web
pages; both can be optionally built as apache modules,
improving the performance under the apache server by
leveraging persistent processes.

mod_tcl differs from the other two in that it provides a
low-level interface to all of the different hook points that
apache makes available during its request processing.
This means that you can use mod_tcl to do things other
than page generation as we shall see later. mod_tcl
does not attempt to provide a higher level framework for
page generation as the others do, but can easily be used
as the basis for one.

II. ANATOMY OF AN HTTP REQUEST

When apache receives a new request, it goes through
a set of stages as indicated in the figure below.

map to storage

header parser

access check

authentication

authorisation

type checker

request parsing

security phase

preparation phase

fixups

handler phase

response handler

new request

translate url

log request

The initial phase – request parsing – is responsible for
understanding the URI and mapping it onto an
underlying file or service. The second phase – security
– applies any access, authentication and authorization

mod_tcl
TCL inside the Apache web server

Olly Stephens, Systems Architect, ARM Ltd

mod_tcl : TCL inside the Apache web server 2

checks. There then follows a fixup phase where things
like the MIME type of the response are determined.
Finally, the handler phase actually generates the
response.

For each of these phases, apache provides a number
of hook points. Code can be written that will be called
during this phase and is capable of handling that phase,
rejecting the request or ignoring the request – in the
latter case, apache will drop through to the next handler
for the phase with each one having a default internal
implementation.

A typical web framework implementation will
implement a hook for the response handler.

III. MOD_TCL IMPLEMENTATION

mod_tcl implements hooks for all 11 of the stages
shown in the previous diagram. Each hook is benign
unless additional configuration is provided which wires
specific TCL code into a specific hook.

TCL hooks are enabled using directives in the apache
configuration file. These take the form:

TclPhaseHandler funcname [file]

where phase determines the place the hook will fire
and funcname is the function that will be called when the
hook fires. If file is specified, it indicates a TCL file that
will be sourced into the interpreter before the function is
called. The file will be sourced into its own namespace
(derived from the name of the file) in order to isolate its
contents. funcname – if not fully qualified – is assumed
to be defined in the file, and so is assumed to be in the
same derived namespace. If file is not specified, then it
is assumed that funcname will be fully qualified and will
refer to a library function. The exception to this
assumption is the response handler which is dealt with
slightly differently.

Typical examples of TCL directives are:

TclTranslateHandler trans tcllib/mapper.tcl

TclLogHandler ::myapp::log_request

In the first example above, the file
tcllib/mapper.tcl will be sourced if it hasn’t yet in the
current interpreter or if the file has changed since it was
last sourced. It will be sourced into its own namespace.

Then the trans function within that namespace will be
invoked to handle the translation.

In the second example above, no file is sourced but

the ::myapp::log_request function will be called to
handle the log phase.

The TCL functions that implement the handlers need
to understand what apache needs from them. The
interface provided by mod_tcl is a low-level one where
each TCL API function corresponds to a core apache
function and not much more. The functions are called
without arguments. A special command

apache::request gives read/write access to the apache
request object. The function is expected to return the
appropriate apache return code (e.g. OK, DECLINED,
etc.) which are all available as constants in the
::apache namespace.

For the special case response handler, it is usual for
the URI to refer to a specific TCL file. So file defaults to
be a file based on the URI and it is an error (404 – file
not found) if it does not exist. Response handling also
requires that the apache configuration associate the file
with the TCL handler. This is standard for a response
module.

Example directives for response handling would
therefore be:

AddHandler tcl-script .tcl

TclResponseHandler response

In this example, all files that end with .tcl will be
handled by the TCL code. For each one, it will load it
into the interpreter – in its own namespace as usual –
then invoke the response function from that namespace
to generate the response.

As with other handlers, if the file has changed since it
was last sourced into the interpreter, this step will be
redone before the function is called. This is particularly
convenient for response handlers as it avoids the
necessity of restarting the server just because a content
page has changed.

mod_tcl maintains a pool of TCL interpreters from
which it allocates them per request. An interpreter that
is allocated to a request is used for all phases of that
request. Interpreter allocation is deferred until absolutely
necessary to avoid the overhead of allocation for
requests that do not involve any TCL processing.

Apache can handle concurrent requests by either
running in a traditional child-fork model, a threaded
single-process model, or a hybrid of the two. The new
version of mod_tcl supports all three modes; the old
version – like many other language modules – only
supported prefork. Interpreters are never simultaneously
accessed by separate threads due to their binding to
individual requests – which are also only ever single
threaded, so there are no contentions. Only interpreter
allocation needs to be protected by a mutex, and this is
achieved using a standard APR “resource pool” object to
manage them. This resource pool object lets you control
– through apache configuration directives – the
maximum and minimum number of spare interpreters
that will be maintained in the pool. This allows the
number to swell when the server is busy, and to
automatically reclaim that resource when the load
lessens.

In addition to the request phase handlers, the apache

mod_tcl : TCL inside the Apache web server 3

config can provide TCL code that is invoked in any new
interpreter before it is used and code that is invoked
before any interpreter is disposed of.

IV. ADD-ON MODULES

In addition to the core functionality provided to TCL by
the module, mod_tcl also provides some runtime hooks
which allow extension modules to add their own
functionality. The core distribution contains the following
additional modules. Each one can be optionally included
at runtime through a directive in the configuration file.

mod_tcl_io

This module provides an IO abstraction to the TCL

code so that stdin represents the request content,

stdout can be used for the response and stderr maps
to the apache error log.

In addition, this module implements a filter function
which allows you to use TCL to implement either an
input or output filter.

mod_tcl_apreq

This module provides an interface in TCL to the apreq
module which is an input filter that parses form requests
and makes them available through a standard API.
Consequently, it can be used by response handlers to
easily process forms, including file uploads. It also
provides high-level functions for dealing with cookies
which are exposed to TCL as well.

The apreq module/interface is also used by Rivet
through a very similar interface.

mod_tcl_ssl

This module provides an interface in TCL to SSL
parameters if the request is made to a secure web
server.

mod_tcl_apr
This module provides an interface to some of the

useful functions implemented in the APR layer. These
include functions such as password checking. The
interface is far from complete – APR and APRutil have a
huge amount of useful and interesting functionality – and
should really be factored out into a standalone TCL
package instead.

V. EXAMPLES

The code snippets for these examples are located at
the end of the paper.

A. Simple response handler

This example shows the implementation of a typical
simple response handler. Note that the actual response
implementation is fairly cluttered and not at all
appropriate for large web pages. It is trivial, however, to
use other TCL packages to raise the abstraction to a
level that is more productive.

B. Authentication handler

This example shows the implementation of a simple
authentication handler. Apache authentication has three
stages to it; access check (anonymous so usually just
remote host checking), authentication (no longer
anonymous; is this person who they say they are?) and
authorization (can this person – who is authentic – do
what they are asking to do). The example uses the latter
two to ensure that only one person can access the
secret area, and only if he logs in correctly. The
example uses basic authentication as it is trivial to setup.
A more modern example using forms and cookies is
equally viable using mod_tcl – we have implemented
one – but would be too much code to be used in this
context.

C. Uploading via PUT

This example shows the implementation of a custom
file upload process server-side. Browsers don’t typically
support the PUT protocol, but in custom clients it’s
simple to implement and server-side it’s much more
lightweight than a POST request as the file doesn’t have
to be parsed out of the message.

In this example, a translate handler is employed to
ensure that any URL within the uploads area will be
directed to the putfile code. The code then provides a
custom response handler which processes the upload
and returns a plain text status message.

This example also shows the use of standard streams,
made possible by the mod_log_io add-on.

D. Downloading (with range support)

This final example shows the implementation of a
download manager. Responding to requests with the
content of a file is trivial to implement at the response
handler layer. But if you want to support the full HTTP
standard, you need to also allow for partial range-based
downloads. This increases the complexity of the
required code considerably. The built-in apache
response handler, however, has all this support within it.
It is also by far the most efficient way of streaming a
large file as it’s capable of using numerous tricks to
increase the throughput. Consequently, it makes sense
– if possible – to redirect static file downloads back into
the apache core. This example does just that; it uses
the translation phase to map the request to an actual file
that will be returned. It then demonstrates another
mod_tcl feature – the ability to register additional
handlers on a per-request basis. It uses this method to
register a type handler – necessary to avoid apache
guessing the type from the spool file which in this case
may have an odd name – and a log handler to record the
download speed at the end of the transfer.

VI. IMPLEMENTATION CHALLENGES

A number of the key new features that have been
added since mod_tcl 1.0 have already been mentioned

mod_tcl : TCL inside the Apache web server 4

in passing. The dynamic handlers demonstrated above
is one such example. Another is the support for
interpreter pools. This has proved quite challenging to
get to a stage where it functions in an obvious and safe
way. The thread-safe nature of the core TCL interpreter
has made it possible for this module to work in a
threaded example – something that isn’t true of some
other scripting languages’ apache modules.

However, there are three elements in particular that
have presented specific challenges during the
implementation and they are detailed below.

A. Request object handling

Each apache request generates an internal request
object. This object is passed to the hooks, and is used
to lookup or set information based on the request.

During the handling of a request, sub-requests can be
spawned which are children of the initial request but
have their own object. Consequently it is sometimes
necessary to walk the parent/child relationships of
objects in order to determine the correct response.

Some language interfaces – e.g. mod_perl – expose
the request object in a variable that is passed as a
parameter to the hook code. mod_tcl does not do this
because of the added complexity involved in ensuring
stale request handles do not get cached in interpreters.
Instead, mod_tcl uses a special access function
apache::request to give read/write access to the
elements of a request through an extensive list of sub-
commands. This function additionally has special
modifier sub-commands prev and next which allow tests
for the presence of previous/next (parent/child) requests
and for querying those requests instead. This is best
explained using an example:
apache::request uri

This command returns the URI of the current request
apache::request prev

This command returns true if a previous request exists
apache::request prev uri

This command returns the URI of the previous
request.

Storing the actual request object for reference when
required by TCL commands originally proved
troublesome too. However, the ability in 8.5 to attach
arbitrary data to a namespace solved this particular
conundrum.

B. APR table support

The APR library used extensively by the apache httpd
code has a table object which is not dissimilar from a
TCL dictionary. However, there is one key difference –
APR tables can contain duplicate keys. Duplicate keys
are seldom used, but do occur in key places, such as the
headers_in and headers_out sections of a request.

In order to support these tables, and to exploit the

commonality of these tables to reduce the amount of
core code, a TCL interface to the tables was written that
is hooked into the necessary places whenever the object
being referenced is an APR table. The interface is
designed to mimic the dict interface to a certain degree,

with the usual set, get and keys sub-commands.

However, it also has an add sub-command which differs
from set in that it adds an additional identical key rather

than replacing an existing one. It also has a dict

command which returns the complete object as a dict for
further processing – this ignores duplicate keys so is not
applicable for all use cases but covers most.

C. Thread management in the IO add-on

The mod_tcl_io module manipulates TCL streams,
associating them with particular requests, flushing them
when a request completes, etc. Early implementations
tried to define just three main streams, to implement
stdin, stdout and stderr. But their use between multiple
threads caused problems. The current solution instead
maintains three streams per thread, making use of TCL’s
thread-specific data storage functions.

VII. FUTURE WORK

The new version of mod_tcl discussed in this paper is
currently in production use within ARM. It has proven
itself to be robust, stable and fast. However, the
production servers run in prefork mode so more testing
is required in multi-threaded more before this claim can
be extended to any apache environment. In particular,
whilst the code should work no problem under Windows,
it has not even been compiled let alone tested.

I am in the final stages of arranging to contribute the
code back to the apache project so that people can test
it themselves. I hope, some point soon, to have tested it
sufficiently to declare it a worthy candidate for a mod_tcl
2.0 core release.

The obvious next step for the code would be to
implement additional add-on modules mod_tcl_rivet
and/or mod_tcl_websh. Both of these technologies can
run under different environments and this would allow
them to run inside an apache server that also uses
mod_tcl. At the same time, the potential to refactor
some code out to a common library shared by all of the
implementations may be possible.

Finally, it would be very interesting to implement
mod_tcl_dav – an add-on that would expose DAV
requests to TCL code. This would enable an
implementation that mapped a TCL VFS into the
WebDAV protocol for example.

REFERENCES

[1] http://tcl.apache.org/websh/
[2] http://tcl.apache.org/rivet/

mod_tcl : TCL inside the Apache web server 5

EXAMPLE CODE

A. Simple response handler

conf/httpd.conf

<FilesMatch "\.tcl$">
SetHandler tcl-script
TclResponseHandler response

</FilesMatch>

htdocs/test.tcl

proc response {} {
apache::request content_type text/html
apache::send_http_header
apache::rputs "<html><head>"
apache::rputs "<title>TEST</title>"
apache::rputs "</head><body>"
apache::rputs "<h1>TEST</h1>"
apache::rputs "<p>TCL is [info patchlevel]</p>"
apache::rputs "<p>APACHE is [apache::get_server_version]</p>"
apache::rputs "</body></html>"
return $::apache::OK

}

B. Authentication handler

conf/httpd.conf

<Location /secret>
AuthType Basic
AuthName "My Secret Stuff"
Require valid-user
TclAuthenHandler authen tcllib/auth/handlers.tcl
TclAuthzHandler authz tcllib/auth/handlers.tcl

</Location>

tcllib/auth/handlers.tcl

proc authen {} {
foreach {rc pw} [apache::get_basic_auth_pw] break
if {$rc != $::apache::OK} {
return $rc

}
if {$pw eq [apache::request user]} {
return $::apache::OK

}
apache::note_basic_auth_failure
return $::apache::HTTP_FORBIDDEN

}

proc authz {} {
if {[apache::request user] eq "olly"} {
return $::apache::OK

} else {
return $::apache::HTTP_FORBIDDEN

}
}

mod_tcl : TCL inside the Apache web server 6

EXAMPLE CODE

C. uploading via PUT

conf/httpd.conf

<Location /uploads>
TclTransHandler translate tcllib/putfile.tcl
TclResponseHandler response

</Location>

tcllib/putfile.tcl

proc translate {} {
apache::request filename tcllib/putfile.tcl
return $::apache::OK

}

proc response {} {
apache::request content_type text/plain
if {[catch {
if {[apache::request method] ne "PUT"} {

error "not a PUT request"
}
set nm [file join $::TMPDIR [file tail [apache::request uri]]]
set fd [open $nm w]
set sz [fcopy stdin $fd]
close $fd
puts "uploaded $nm ($sz bytes)"

} err] != 0} {
puts $err
return $::apache::HTTP_INTERNAL_SERVER_ERROR

}
return $::apache::OK

}

D. download wrapping

conf/httpd.conf

<Location /downloads>
TclTransHandler translate tcllib/getfile.tcl

</Location>

tcllib/getfile.tcl

proc translate {} {
foreach {key fnm typ} [spool_file [apache::request uri]] break
apache::request filename $fnm
apache::handler type [namespace code "set_type $typ"]
apache::handler log [namespace code "log_dnld $key [clock seconds]"]
return $::apache::OK

}

proc set_type {typ} {
apache::request content_type $typ

}

proc log_dnld {key start} {
log_download $key [apache::request bytes_sent] [expr [clock seconds] - $start]

}

