
Poet: An OOP Extension to Tcl Supporting Constraints, 
Persistence, and End-User Modification

Philip J. Mercurio
Thyrd.org

mercurio@acm.org

Abstract

Poet (Prototype Object Extension for Tcl) extends the Tcl 
language with objects featuring dynamic, prototype-based 
inheritance, persistence, and one-way constraints between 
object attributes. Poet includes wrappers around the Tk and 
BWidget widgets that are automatically generated  using 
introspection.   This paper also describes Poetics (Poet 
Integrated Construction Set), a sub-project within Poet to 
create tools to allow a Poet application's code and user 
interface to be modified by the end-user, from within a 
running Poet application.   The goal of Poetics is to provide 
some of the functionality of an integrated development 
environment to the user of a Poet application. An object 
inspector and code editor are the beginnings of the Poetics 
toolset.

Poet is an open-source project hosted at 
poet.sourceforge.net.

Keywords
Tcl/Tk, Object-Oriented Programming, Prototypes, 
Constraints, Persistence, End-User Programming.

Introduction
Application developers using dynamic, interpreted 
languages like Tcl/Tk [1] enjoy access to the command 
interpreter to inspect and modify the state of running 
programs, as an aid to testing and debugging, and for 
prototyping new code.   They may also choose to make the 
command interpreter accessible to the user, to enable end-
user modification of the program.  This is more common if 
the application is itself a command-line program—most 
GUI applications do not expose the command interpreter to 
the end-user.

Poet (Prototype Object Extension for Tcl) is an attempt to 
support the development of GUI applications that can be 
modified by an end-user.  We begin by constructing an 
object system that is fully dynamic and transparent and 
includes support for persistence.  Poet also provides a 
constraint network that automatically maintains 
relationships between object attributes.  Introspection is 
used to generate wrappers that define Poet objects for each 
of the Tk and BWidget widgets, allowing GUI objects to 
participate in the constraint network. 

A set of tools known collectively as Poetics (Poet 

Integrated Construction Set) supports end-user inspection 
and modification of a running application.  The primary 
tool is an object browser that displays an object's attributes 
(called slots), methods, constraints, and relationships to 
other objects.  Poetics also employs Poet's optional type 
annotation feature so that appropriate content-specific 
editors can be  created to edit slot values.  A syntax-
highlighting code editor allows an application's source code 
to be edited, saved, and reloaded in a running application.

As of this writing, the Poetics tools are incomplete and not 
ready for end-user use.  However, even in its current, 
limited form Poetics can be very useful to the Poet 
application developer.

Related Work
The primary inspiration for Poet is Self [2], a dynamic 
object-oriented programming language and environment. 
Principal to the Self UI is its liveness [3], the sense that the 
user gets that the programming objects being manipulated 
are real and can be visibly changed.  Self was also the 
inspiration behind using prototype-based inheritance rather 
than class-based in the design of Poet's object system.  

Poet's constraint network is an implementation of one-way 
constraints, as used in ThingLab [4], Garnet [5], and 
Amulet [6].  Like these systems and in contrast to Self, Poet 
is intended as a platform for the development of desktop 
applications, not, primarily, as an interactive programming 
environment.  Poetics' end-user programming features are 
not intended for the typical user of a Poet application, but 
for a subset of sophisticated user/developers (“gardeners” 
[7]).

Many other OOP extensions to Tcl exist [8], some class-
based and some prototype-based.  Poet sacrifices safety and 
some aspects of modularity in favor of a completely open 
and dynamic object model.  All slots of a Poet object are 
accessible to be read or modified, and all of an object's 
methods can be invoked (or modified) from any code—
there is no mechanism for limiting access.    Message 
dispatch in Poet is completely dynamic, an object's 
response to a message may change from one invocation to 
the next due to changes to the object's ancestors.  This 
freedom is embraced by several other Tcl OOP extensions, 
such as XOTcl [9] and Snit [10].  

An extension called theObjects [11] released by Juergen 
Wagner in 1994 served as the basis for Poet.  theObjects 

mailto:mercurio@acm.org


implements prototype-based inheritance as a C extension to 
Tcl. In 1996 I ported it to Tcl7.5/Tk4.1, and in 1997 I began 
work on a complete redesign and port to Tcl8.0 under the 
name Poet.  Some of the syntactical differences between 
theObjects and Poet are inspired by Object Tcl [12], another 
dynamic OOP extension to Tcl.

Although most of Poet is implemented in Tcl, it has always 
benefited from having a C core.  Since the primordial Poet 
object, Object, is implemented in C, there was little 
overhead  resulting from choosing to write a particular 
method in C vs. Tcl.  Approximately one third of the 
methods on Object are implemented in C.  Poet's 
constraint network is also implemented in C. 

Objects, Methods, and Slots
Poet begins by defining the Tcl command Object, the 
ancestor to all Poet objects.  A Poet object consists of a C 
structure, a Tcl command, and a set of Tcl arrays, called the 
object's dimensions, which hold most of the data pertaining 
to the object.  Since the dimension arrays are accessible 
from both C and Tcl, much of Poet's internals can be 
implemented in Tcl.  The C code for Poet is about 5000 
lines, one quarter of which implements the constraint 
network.  The remainder of the non-GUI portion of Poet  is 
implemented in approximately 4300 lines of Tcl.

Objects are constructed by their parent and destruct 
themselves.  Poet uses Tcl's autoloading support to load an 
object's source code file when the object is first referenced. 
The first command in an object's source file is an 
invocation of the construct method on its parent, which 
causes the parent to be autoloaded if it doesn't already exist. 
Multiple inheritance is supported by the method mixin, 
which also makes sure the new parent is loaded.  Thus 
loading an object causes all of its ancestors to be loaded as 
well.

Poet does not yet implement garbage collection, it is 
expected that objects will be explicitly destroyed and will 
clean up after themselves by overriding the method 
destruct.  In addition, one of the dimensions of an 
object is used to store a list of goodbye scripts, Tcl scripts 
that will be automatically invoked when the object 
destructs.  Goodbye scripts are often used to notify another 
object about this object's demise. For example, a user 
interface object might attach a goodbye script to an object 
that it is displaying, to receive a notification when the 
object is deleted.

When a method is invoked on an object, the inheritance 
hierarchy, starting with the object itself then its parent and 
mixins, is searched for an implementation of the method. 
Internally, a Poet method is a Tcl procedure with the target 
object available as $self.  Methods overriding an 
ancestor's implementation do not automatically invoke the 
overridden method, but any method can be called on any 
object using the method as.  For example, an object that 

behaves just like Object but announces when it is destroyed 
would be implemented as in Example 1.

Object construct VerboseObject

VerboseObject method destruct {} {
    puts stderr "$self destructing"
    $self as [$self parent] destruct
}

Example 1. Complete definition of an object that  
announces its destruction.

If the argument given to Object construct ends with 
“*”, the name of the object constructed will consist of the 
argument followed by a serial number guaranteed to be 
unique in this interpreter—an anonymous object name. If 
“@” is used instead, a persistent version of the anonymous 
serial number is used, returning a name unique within the 
persistent storage and suitable for naming a persistent 
object.

Object attributes are accessed via the slot method. Given 
one argument, slot returns the value of that slot as seen 
from the current object.  If the slot does not appear locally 
on the object, its ancestors are searched for a value.  If it is 
not found, the null string is returned but no error is 
generated (the method hasSlot can be used to distinguish 
between an object that doesn't recognize a slot name and 
one that has the slot, but set to the null string). 

With two arguments, slot sets the value of the named slot 
locally on $self, overriding any value set on an ancestor 
but not changing the ancestor's value for the slot.  If the 
local version of the slot is later removed, the inherited 
version once again becomes available, as shown in 
Example 2.

Slots with names beginning with "_" (underscore) are 
private and are not subject to inheritance. If a private slot is 
referenced and there isn't a value set for it on $self, null 
is returned. Private slots are also not part of the persistent 
storage for an object.  The underscore may also be used to 
indicate private methods, but this is just a naming 
convention and is not enforced by Poet.  Any slot or 
method may be accessed on any object, regardless of 
whether it has a public or private name.

Slots may be designated as active slots that trigger a 
method invocation when they are read and/or written.  A 
slot named test1 on object alpha, activated for 
writing, will cause a method called test1> to be executed 
on alpha when the value of test1 is changed.  (The 
suffix indicating a read-active slot's method is "<".)  The 
test1> method may veto the attempt to set the slot and 
set it back to an allowable value, acting as a guard.  Note 
that the slot test1 and the method test1> are subject to 
inheritance separately, so that a slot's behavior and value 



may reside on different objects.

Slots are implemented as Tcl variables, they are elements of 
one of the object's dimension arrays. Tcl's trace mechanism 
is used to implement active slots and to trigger events in the 
constraint  network.

% Object construct a
a
% a slot name "The Letter A"
The Letter A
% a slot name
The Letter A
% a construct b
b
% b slot name
The Letter A
% b slot name "The Letter B"
The Letter B
% b slot name
The Letter B
% a slot name
The Letter A
% b unslot name
% b slot name
The Letter A

Example 2. Sample dialog with the Tcl interpreter  
showing the creation and removal of a slot.

Persistence
Poet objects can be designated as persistent by having them 
mix in the object Thing.  The object ThingPool is used 
to specify the storage for the pool and to load and save it. 
When the pool is written to storage, a Tcl script is created 
for each Thing object consisting of the commands that 
construct the object, set its public slots to their current 
values, and declare its parents, methods, etc.  If the storage 
provided is a directory the scripts will be written as 
separate files, if a file is provided they will be written as a 
virtual file system using tcllib's VFS support.  The current 
value of the @ anonymous name counter and an index to 
the persistent objects are also saved.

When a ThingPool is opened, the index and counter are 
read.  Things are then autoloaded as they are referenced.  If 
an object has component objects that it depends on it can 
override the method Thing_postload to cause them to 
be loaded when it is loaded, or it can just allow them to be 
autoloaded later.  Thing also arranges for the persistent 
storage file to be deleted when the object destructs.

The code necessary to set up for persistence can be as 
simple as in Example 3. This code causes the first 
command line argument to the program to be opened as the 
persistent storage (either a directory or file) and made 
writable.  We then redefine exit so that the pool will be 
closed when the application exits.   All that remains is to 

mix Thing into any objects that should persist.

ThingPool setFile [lindex $::argv 0]
ThingPool slot writable 1
ThingPool open

rename exit crash
proc exit {{returnCode 0}} {
    ThingPool close
    crash $returnCode
}

Example 3. Setup for persistence.

Constraints
A slot's value can be constrained via the method 
slotConstrain, which takes the name of the slot as its 
argument.  This initiates a search up the inheritance 
hierarchy for a formula with the same name as the slot. 
The formula is a Tcl script that is evaluated, its return value 
becomes the value of the slot.  Like a method, a formula 
has access to the current object via $self. During the 
evaluation, accessing any other slot on any object causes it 
to be automatically recorded as a source in the constraint 
network, with the constrained slot as its destination.  At any 
time in the future, when a source slot's value is changed, an 
event will be queued to recalculate each of its destination 
nodes. 

Although Poet constraints are one-way, they can be 
arranged such that there is a circular dependency 
relationship between slots in the network, and it is possible 
to get caught in an infinite loop.  The Poet distribution 
includes a demo of three scales ranging from 0 to 600, each 
of which has a formula constraining the slot containing its 
value to two times the value of the next scale, with the last 
scale dependent on the first.  The formula also limits the 
value to 512, so that, in most cases, the network will stop 
updating once each scale reaches 512.  If all three slots are 
constrained simultaneously, however, it is possible to get 
caught in a loop.  To avoid this, each invocation of 
slotConstrain should be followed by a call to Tcl's 
update to allow the event queue to run and the constraint 
network to incorporate the new constraint.  

A problem with automatically recording constraints when 
executing a formula is that incidental slot references not 
related to the computed value cause irrelevant dependencies 
to be created.  Poet provides two means of dealing with this 
problem: 1) An object can be specified as the constraint 
limit, only objects descended from it are allowed to 
participate in the network. 2) Within a formula, a script can 
be executed as a side effect, so that no constraints are 
recorded, by passing it as the argument in the command

Poet sideEffect script.  

Even if there are no circular or irrelevant dependencies in 



the network, it might take a noticeable while to settle into a 
stable state if there is a lot of computation to be done.  A 
formula can indicate that it has not completed computing its 
value by returning with a special error code containing a 
unique token (such as the name of a Poet object).  The error 
is caught and the token is associated with the destination 
slot.  The slot is not assigned a value and another event to 
compute its value is queued.  As the formula is invoked 
repeatedly, it uses the token to indicate when it is resuming 
work on the computation, and when it has completed.  This 
mechanism can be used to maintain liveness when using a 
constraint network requiring significant computation or 
frequent UI updates.

Type Annotations
Poet slots, being Tcl variables, can hold any value.  Poet 
provides a means of annotating a slot with an indication of 
what types of values the slot should contain. This is 
implemented by adding a type dimension to objects. The 
method type has the same usage as slot: when invoked 
with the name of a slot and an arbitrary string it associates 
the string with the slot name. If invoked with just a slot 
name, it returns the type string associated with that slot, 
searching the object's ancestors if necessary. Note that, as 
with formulas, a slot's type annotation may be inherited 
from a different object than the one that holds the slot's 
value.

Poet's type annotations do not comprise a type system in 
the traditional sense. Slot values are not required to 
conform to their types, and type inferencing is not used to 
validate expressions. In fact, the use of type annotations is 
completely optional. If the type of a slot is requested but 
none was declared, the null string is returned and no error is 
generated. 

Poet does not use types to limit the allowable values for a 
slot, but the application programmer can chose to write 
objects whose slots conform to their types.  The application 
programmer may also define their own type annotations 
with their own semantics, ignoring the type strings defined 
in the Poet library.

The Poet code declares types for many slots but does not 
use them until we get to Poetics, where they are used in the 
introspection of Poet objects. Poetics defines a set of type 
strings representing most of the types used in setting the 
options of Tk widgets (integers, reals, colors, font names, 
etc.).  These types are used to select an appropriate widget 
to edit each slot of an object in the object browser.  This is 
further discussed in the section on Poetics below.

ProtoWidget & Assimilation
Poet supports the construction of custom toplevel windows 
and widgets by providing a set of wrapper objects for the 
existing Tk and BWidget widgets.  A preprocessing Tcl 
script assimilates a widget set by creating one of each 
widget type, using Tk's introspection to examine its 

options, and writing out a Poet object with a write-active 
slot for each option. When a slot is written the 
corresponding option is reconfigured on the enclosed Tk or 
BWidget widget.  Types are also assigned for the slots, 
based on information gleaned from the Tk source code by a 
pre-preprocessing script. These type hints, represented in a 
table mapping widget names and attribute names to a type, 
have to be further edited by hand before they are ready to 
be used by the assimilation script.  

Example 4 shows the code generated for the background 
option for a Tk button on the X11 platform (the method 
primary returns the enclosed button's Tk pathname). The 
last line in the example makes the slot active when written. 

Tk_Button slot background #d9d9d9
Tk_Button method background> {value} {
    set p [$self primary]
    if {$p ne ""} {
        $p configure -background $value
    }
}
Tk_Button type background <color>
Tk_Button slotOn background >

Example 4. Auto-generated code assimilating the  
background option of a Tk button.

The code generated by the assimilation preprocessor will 
differ slightly from platform to platform, mostly in the 
default values for various options (the default button 
background under Windows, for example, is 
SystemButtonFace).  Assimilation must be run once on 
each platform, but doesn't need to be rerun unless an 
assimilated widget's API changes.  The Poet installation 
directory can contain the output from multiple assimilation 
runs, the correct set for the current platform is chosen at 
runtime.

All Poet GUI objects are descendant from ProtoWidget, 
which implements underlying support for the autogenerated 
code.  ProtoWidgets contain a slot called layout which 
specifies the geometry manager and options to be used to 
lay out the widget.  If a widget's layout begins with a “-” 
(dash), it is assumed to be a list of options to pack, 
otherwise the first word of the layout is the name of the 
geometry manager and the rest are the options.  In this way 
a Poet widget's layout can be specified in the same 
command as the rest of its options, and can participate in 
the constraint network as well.

ProtoWidget adds additional arguments to its construct 
method so that the values of slots can be set using 
“-slotname value” argument pairs, making creating a 
widget in Poet cosmetically similar to Tk. Example 5 
shows a complete Poet program that creates a window with 
a scale ranging from -7 to 7, and a button labeled “Reset”. 



The button sets the value of the scale to 0. The state of the 
button is constrained so that it is disabled any time the scale 
is already 0. The window created by running Example 5 is 
shown in Figure 1.

package require Poet

Tk_Scale construct scl . \
    -from -7 -to 7 \
    -orient horizontal \
    -layout {-side top}
Tk_Button construct btn . \
    -text "Reset" \
    -layout {-side top} \
    -command "scl slot value 0"

btn formula state {
    expr {[scl slot value] == 0 ?
        "disabled" : "normal"}
}
btn slotConstrain state

Example 5. Complete Poet program demonstrating a 
constrained widget option.

Assimilation actually generates two source files for each 
widget, the second one is mostly blank and will not be 
overwritten if it already exists.  Additional methods to 
enhance the assimilated widget can be added here.  The 
Poet library also includes a small set of custom widgets.

Poetics
Poetics is an attempt to support modification of a running 
Poet program's objects via direct manipulation.  We begin 
by defining a set of type annotations oriented toward 
editing Tk widgets.  A type string is of two forms.  If it 
doesn't begin with a “<”, it is assumed to be the name of a 
Poet object, and the corresponding slot is expected to 
contain the name of an object that inherits from that object.

If the type string begins with “<”, it is a list, the first item 
of which is one of 18 known types enclosed in angle 
brackets (one slot of each type is displayed in the object 

browser shown in Figure 3).  The remainder of the list, if 
present, contains parameters for this application of the type.

For example, a real number can be represented with the 
type annotation <real>, while an integer type string 
would be <integer>.  Either of these two types can be 
extended with optional parameters specifying minimum, 
maximum, and step values.  The type string 

<real> -1.0 1.0 0.1 

specifies a real value with a minimum value of -1 and a 
maximum of 1, and that it should be adjusted in increments 
of 0.1.  The type string

<integer> 0 

describes an integer with a minimum value of 0 but no 
stated maximum or step value.  These type annotations are 
used by Poetics to configure a spinbox or scale widget for 
editing a slot of these types.

As another example, a slot with the type 

<choice> alpha beta gamma 

is allowed to take on only the value “alpha”, “beta”, or 
“gamma”.  When creating an editor for such a slot, Poetics 
will use a combobox with the three alternatives present 
rather than a plain text entry widget.  

The assimilated wrappers around the Tk and BWidget 
widgets have types like these defined for all of their slots, it 
is up to the Poet application developer to type the slots in 
the objects they write.  When the object browser is viewing 
an object with typed slots, it presents an interface better 
suited for editing that object than one which edits all slots 
as string values.

Poetics also attaches a right-click popup menu to each 
ProtoWidget, similar to the one shown in Figure 2.  The top 
item in the cascade menu to the right indicates that it was 
popped up over an object named *e whose parent is 
Tk_Button. The rest of the menu indicates that the button is 
contained within a Tk_Frame named *6, which is in a 
Tk_Toplevel named *3.  In this manner any of the widgets 
under the location where the right-click occurs can be 
selected.

Figure 1: Output of  
Example 5

Figure 2: Poetics popup menu



Browsing and Editing Objects
The menu can be used to open an object browser, like the 
one shown in Figure 3.  If a ProtoWidget is selected, the 
browser will open on that object.  In this figure, the browser 
is displaying a set of objects created for demonstration 
purposes.

The browser consists of two panels, each with a combobox 
displaying a Poet object name.  These comboboxes are also 
drop targets for icons representing objects, such as those 
displayed in the tree in the left panel.  The icon indicates 
how the object name was generated: anonymous names are 
represented by a * icon, persistent anonymous names by a 
@ icon, and non-anonymous names by a hand. The arrows 
next to the comboboxes control whether changing one entry 
changes the other to match.  The browser is currently 
displaying two different objects, DemoObject on the left 
and a child, Demo_Types, on the right.

The left panel contains a notebook of tree widgets 
displaying various relationships between the selected object 
and other objects.  The first two pages display the object's 
ancestors and descendants, DemoObject's descendant tree 
is shown.  The next two pages are relevant only if the 
selected object is a ProtoWidget: one displays the widgets 

contained within the selected widget (such as the buttons 
contained within a frame), the other displays the containers 
or shells surrounding a widget.  The last two pages apply to 
objects that have constraints on some of their slots and 
display other objects that have links into this object (are 
sources to formulas on this object) and those that have links 
out from this object (objects with formulas referencing slots 
on this object).

The panel on the right is a notebook of tables displaying 
various aspects of an object.  Shown is a table of the slots 
local to the object Demo_Types.  Each slot has an icon on 
the left that indicates if the slot is private or public, a source 
or destination (or both) in the constraint network, or active 
for reading or writing or both—this is shown better in 
Figure 4.  The third column of the table contains an editor 
for the slot's value specific to the slot's type.  For example, 
the editor for slotOfType-<cursor>  is a combobox 
presenting the allowable names for a Tk cursor, while the 
editor for slotOfType-<font> is a text entry for the 
font name and a button that brings up a font selector dialog. 
This example shows the custom slot editors available as of 
this writing, the default is a text entry widget and a button 
to open a multi-line text editor.

Figure 3: Object browser



The next page of the notebook lists all of the slots available 
on the object, including those whose values are inherited. 
Inherited slots are highlighted in yellow, and clicking on an 
inherited value in an attempt to change it pops up a dialog 
for the user to confirm (or cancel) setting a new, local value 
for the slot.

Poetics includes a syntax-highlighting source  code editor 
that can be opened via the ProtoWidget popup menu.  The 
remaining three tabs of the object notebook display tables 
of the local methods, all methods, and all formulas defined 
for the selected object.   Dragging a method or formula icon 
from the table onto a  code editor will cause it to open the 
source file and highlight the method or formula definition. 
Currently, this only works for autoloaded objects, since 
Poetics relies on the autoload index to obtain the pathname 
of the source file given an object name.

Problems & Future Work
The dynamic aspects of Poet's object system make for a 
fluid programming experience, but they can also land the 
programmer in hot water.  There is no protection for the 
contents of an object, so a slot can change value or a 
method can be redefined from any point in the source code. 
A common mistake is to copy the text of some methods 
from one object to another, and to accidentally end up with 
two definitions for the same method on the same object in 
two different source files.  With autoloading enabled, a 
method may behave normally for part of the operation of 
the program, and suddenly change behavior when an 
unrelated object is loaded carrying an out-of-date version of 
the method.  The procedure that creates the autoloading 
index attempts to detect problems of this sort, but it's still 
an easy trap to fall into.  Poet trades safety for flexibility.

Poet's philosophy towards errors is to tolerate as much as 
possible.  Attempting to obtain a nonexistent slot value is 

not an error, the null string is returned instead.  Many errors 
are trapped by a dialog that allows the user to ignore the 
error (this dialog also has an option to drop into the tkcon 
[13] debugger, if available).  The result is an environment 
that is, again, more programmer-friendly than safety-
minded.

Poet, without Poetics, is fully functional and has been used 
for application development for the past two years.  The 
Poetics tools are incomplete and unreliable, and are 
disabled by default when loading Poet.  However, even in 
its primitive state, Poetics is useful to the Poet application 
developer for debugging and testing.

The first step towards an end-user usable Poetics is to 
implement editors for all of the known slot types.  As can 
be seen in Figure 2, only a few slot types have custom 
editors, the rest have a button that opens a text editor.  A 
particular challenge is found in the design of an editor for 
ProtoWidget layout options.  Many good designs have been 
explored by Tcl IDEs like SpecTcl [14], Visual Tcl [15], 
and TkProE [16].  

Poetics currently supports browsing and editing existing 
objects and code files, but does not support creating new 
ones.  It is assumed that most of a Poet application's code 
would be written in the traditional manner, using a text 
editor, and stored as Tcl files.  The objects appearing in the 
application's persistent storage would be primarily holders 
of data, with their methods belonging to ancestors defined 
in the application's source code.  Mostly likely, a Poet 
application developer would not want these ancestral 
objects to be modified by the end-user and would make 
these source files read-only.  Poet's installer does this when 
installing Poet's internal library.

To implement the creation of new objects in a running 
application, Poetics has a small toolbox window bound to 
the F7 key that, while currently limited in functionality, can 
become the locus for controls for creating objects.  When 
the user creates a new object, the system then has to 
determine the disposition of the object, such as whether or 
not it should be persistent.  If it is, is it then an addition to 
the Poet library, or is it part of the application's code, or is it 
part of the data saved by the application?  I've begun 
investigations into subclassing Thing into subordinate 
objects that cause their descendants to be saved into 
different repositories, along with a table-based interface to 
manage multiple pools of persistent data.  The pool used to 
store an object would depend on which child of Thing it 
mixes in, so that by default new objects would reside in the 
same pools as their parents.  The persistence support 
currently available in Poet assumes one repository.

In addition to completing Poetics' support for the creation 
and direct manipulation of Poet objects, I'd also like to 
explore programming-by-demonstration [17] approaches to 
creating Poet code.  Straight-forward extensions of the 
existing tools will make it possible to create a new button in 

Figure 4: Slot icons



a running application and open a code editor on the button's 
command script.  A more significant challenge would be 
augmenting the code editor so that it can monitor events 
occurring elsewhere in the interface, making it possible to 
demonstrate an action, such as changing the value of a slot, 
and have that represented as a command added at the 
current insertion point in the code editor.  This would 
enable a mixture of hand-written and demonstrated code.

Distribution
Poet is an open-source community project released under 
the GNU Lesser General Public License and hosted at 
poet.sourceforge.net.  It currently has been compiled and 
tested on the Windows and Linux platforms, compilation on 
other Tcl-supported platforms should be straight-forward. 
Included in the distribution is a starkit containing Poet and 
the versions of BWidgets, TkTable, TkHtml, and tkcon it 
depends on.  When run standalone the starkit enables 
Poetics and opens a demo window, or the kit can be 
sourced to load Poet (with or without Poetics) into an 
existing Tcl interpreter.

Conclusion
This paper describes Poet, a  OOP extension to Tcl that 
supports dynamic, prototype-based objects, persistence, and 
one-way constraints.  The goal of the project is an 
environment where a sophisticated subset of an 
application's users can modify and extend it from within the 
application itself.  The current, limited implementation of 
the Poetics end-user modification tools are valuable as 
debugging aids for the Poet application programmer.

Acknowledgments
Many thanks are owed for the excellent work and support 
provided by the authors of Tcl/Tk, BWidgets, TkTable, 
TkHtml, tkcon, and theObjects.  Thanks are also due to 
Peter Kochevar for his insightful comments on a draft of 
this paper.

References
[1] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-

Wesley, Reading, MA, USA, 1994.
[2] D. Ungar and R. B. Smith. Self: The Power of 

Simplicity. In Proceedings OOPSLA’87, 1987. 
[3] S. Tanimoto. VIVA: A visual language for image 

processing, J. Vis. Languages and Computing, 127-
139, June 1990.

[4] A. Borning and R. Duisberg. Constraint-based tools for 
building user interfaces. ACM Trans. Graph. 5, 4 (Oct. 
1986), 345-374. 

[5] B. Myers et al. Garnet: Comprehensive support for
graphical, highly interactive user interfaces, Computer, 
71-85, Nov. 1990.

[6] B. Myers, R. McDaniel, R. Miller, B. Vander Zanden, 
D. Giuse, D. Kosbie and A. Mickish. The Prototype-
Instance Object Systems in Amulet and Garnet. In 
Prototype Based Programming, James Noble, Antero 
Taivalsaari and Ivan Moore, eds., Springer-Verlag, 
1999, pp. 141-176. 

[7] M. Gantt and B. A. Nardi.  Gardeners and gurus: 
patterns of cooperation among CAD users. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (1992).  ACM Press, 
New York, NY, pp. 107-117. 

[8] Object-Oriented Programming in Tcl website: 
http://www.tcl.tk/about/oo.html

[9] G. Neumann and U. Zdun. XOTcl, an object-oriented 
scripting language. In Proceedings of Tcl2k: The 7th 
USENIX Tcl/Tk Conference, pp. 163-174, Austin, 
Texas, USA, February 2000.

[10] W. Duquette. "Snit's Not Incr Tcl”, 
http://www.wjduquette.com/snit

[11] J. Wagner. Tcl'ers Wiki entry on theObjects. 
http://wiki.tcl.tk/5681

[12] D. Wetherall and C. Lindblad. Extending Tcl for 
Dynamic Object-Oriented Programming.  Proceedings 
of the Tcl/Tk Workshop 95, Toronto, Ontario, July 
1995.

[13] J. Hobbs. Enhanced Tk Console: tkcon. 
http://tkcon.sourceforge.net

[14] SpecTcl http://spectcl.sourceforge.net
[15] Visual Tcl http://vtcl.sourceforge.net
[16] TkProE http://tkproe.sourceforge.net
[17] A. Cypher,  ed.  Watch  What  I Do:  Programming 

by Demonstration,  MIT  Press,  1993. 

http://tkproe.sourceforge.net/
http://tkproe.sourceforge.net/
http://tkproe.sourceforge.net/
http://vtcl.sourceforge.net/
http://vtcl.sourceforge.net/
http://vtcl.sourceforge.net/
http://spectcl.sourceforge.net/
http://spectcl.sourceforge.net/
http://spectcl.sourceforge.net/
http://tkcon.sourceforge.net/
http://tkcon.sourceforge.net/
http://tkcon.sourceforge.net/
http://wiki.tcl.tk/5681
http://wiki.tcl.tk/5681
http://wiki.tcl.tk/5681
http://www.wjduquette.com/snit
http://www.wjduquette.com/snit
http://www.wjduquette.com/snit
http://www.tcl.tk/about/oo.html
http://www.tcl.tk/about/oo.html
http://www.tcl.tk/about/oo.html
http://poet.sourceforge.net/
http://poet.sourceforge.net/
http://poet.sourceforge.net/

	Abstract
	Keywords
	Introduction
	Related Work
	Objects, Methods, and Slots
	Persistence
	Constraints
	Type Annotations
	ProtoWidget & Assimilation
	Poetics
	Browsing and Editing Objects
	Problems & Future Work
	Distribution
	Conclusion
	Acknowledgments
	References

