
Speed Tables - A High-Performance, Memory-Resident Database for Tcl

Karl Lehenbauer
Peter da Silva

Speed tables provides an interface for defining tables containing zero or more
rows, with each row containing one or more fields. The speed table compiler
reads a table definition and generates C code to create and manage correspond-
ing structures, producing a set of C access routines and a C language extension
for Tcl to create, access and manipulate those tables. It then compiles the ex-
tension, links it as a shared library, and makes it loadable on demand via Tcl's
"package require" mechanism.

Speed tables are well-suited for applications for which this table/row/field ab-
straction is useful, with row counts from the dozens to the tens of millions, for
which the performance requirements for access, search and/or update frequency
exceed those of the available SQL database, and the application does not re-
quire “no transaction loss” behavior in the event of a crash.

In contrast to ad-hoc tables implemented with some combination of arrays, lists,
upvar, namespaces, or even using Tcl 8.5’s dicts, speed tables’ memory footprint
is far smaller and performance far higher when many rows are present.

Speed tables’ search capabilities include indexed searches, results sorting, set-
ting offsets and limits, specifying match expressions, and counting. A configur-
able searching engine, speed table searches bypass the Tcl interpreter on a row-
by-row basis (except for processing matches), providing high performance.
Speed tables support tab-separated reading and writing to files and TCP/IP
sockets, and has a direct C interface to PostgreSQL. Examples are provided for
importing SQL query results into a speed table as well as copying from a speed
table to a database table, again bypassing the interpreter on a per-row basis.

Representing Complex Data Struc-
tures in Tcl
Tcl is not known for its ability to repre-
sent complex data structures. Yes, it
has lists and associative arrays and,
in Tcl 8.5, dicts. Yes, object-oriented
extensions such as Incr Tcl provide
ways to plug objects together to rep-
resent fairly complex data structures
and yes, the BLT toolkit, among oth-
ers, has provided certain more effi-
cient ways to represent data (a vector
data type, for instance) than available
by default and, yes, it is possible to
abuse upvar and namespaces as part

of expressing the structure of, and
methods of access for, your data.
There are, however, three typical
problems with this approach:
1. It is memory-inefficient.

Tables implemented using Tcl ob-
jects use at least an order of mag-
nitude more memory than native
C.
For example, an integer, stored as
a Tcl object, has the integer value
and all the overhead of a Tcl ob-
ject, 24 bytes minimum, routinely

more, and often way more. When
constructing Tcl lists, there is an
overhead to making those lists,
and the list structures themselves
consume memory, sometimes a
surprising amount as Tcl tries to
avoid allocating memory on the fly
by often allocating more than you
need, and sometimes much more
than you need. 1

Another drawback of Tcl arrays is
that they store the field names
(keys) along with each value,
which is inherently necessary
given their design but is yet an-
other example of the inefficiency of
this approach.

2. It is computationally inefficient.
Constructing, managing and ma-
nipulating complicated structures
out of lists, arrays, etc, is quite
processor-intensive when com-
pared to, for instance, a hand-
coded C-based approach exploit-
ing pointers, C structs, and the
like.

3. It yields code that is clumsy and
obtuse.
Using a combination of upvar and
namespaces and lists and arrays
to represent a complex structure
yields relatively opaque and in-
flexible ways of expressing and
manipulating that structure, twist-
ing the code and typically replicat-
ing little pieces of weird structure
access drivel throughout the appli-
cation, making the code hard to
follow, teach, fix, enhance, and
hand off.

Speed tables reads a structure defini-
tion and emits C code to create and
manipulate tables of rows of that
structure. We generate a full-fledged
Tcl C extension that manages rows of
fields as native C structs and emit
subroutines for manipulating those
rows in an efficient manner.
Memory efficiency is high because we
have low per-row storage overhead
beyond the size of the struct itself,
fields are stored in native formats
such as short integer, integer, float,
double, bit, etc, and field names only
occur once for a table type regardless
of the number of tables created and
the number of rows in those tables.
Computational efficiency is high be-
cause we are reasonably clever about
storing and fetching those values, par-
ticularly when populating from lines of
tab-separated data as well as Post-
greSQL database query results, in-
serting into them by reading rows from
a Tcl channel containing tab-
separated data, writing them tab-
separated, locating them, updating
them, and counting them, as well as
importing and exporting by other
means.
Speed tables avoids executing Tcl
code on a per row basis when a lot of
rows need to be looked at. In particu-
lar when bulk inserting and bulk proc-
essing via search, Tcl essentially con-
figures an execution engine that can
operate on millions of rows of data
without the Tcl interpreter’s per-row
involvement except, perhaps, for ex-
ample, executing scripted code only

2

1 It is common to see ten or twenty times the space consumed by the data itself used up by the Tcl objects, lists, arrays, etc, used to hold them.
Even on a modern machine, using 20 gigabytes of memory to store a gigabyte of data is at a minimum kind of gross and, at worst, renders the
solution unusable.)

on the rows that match your search
criteria.
Null Values
Speed tables maintains a "null value"
bit per field, unless told not to, and
provides an out-of-band way to distin-
guish between null values and non-
null values, as is present in SQL data-
bases... providing a ready bridge be-
tween those databases and speed ta-
bles.
Indexes
Speed tables supports defining skip
list-based indexes on one or more
fields in a row, providing multi-
hundred-fold speed improvements for
many searches. Fields that are not
declared to be indexable do not have
any code generated to check for the
existence of indexes, etc, when they
are changed, one of many of optimiza-
tions in place to make speed tables
fast.
Speed Table Data Types
The following data types are avail-
able2:

• boolean - a single 0/1 bit

• varstring - a variable-length string

• fixedstring - a fixed-length string

• short - a short integer

• int - a machine native integer

• long - a machine native long

• wide - a 64-bit wide integer (Tcl
Wide)

• float - a floating point number

• double - a double-precision floating
point number

• mac - an ethernet MAC address

• inet - an internet IP address

• tclobj - a Tcl object
Fields are defined by the data type
followed by the field name, for exam-
ple...
double longitude

...to define a double-precision field
named longitude.
Configurable Field Attributes
Field definitions can followed by one
or more key-value pairs that define
additional attributes about the field.
Supported attributes include

• indexed

If “indexed” is specified with a “true”
value, the code generated for the
speed table will include support for
generating, maintaining, and using a
skip list index on the field being de-
fined.
Indexed traversal can be performed in
conjunction with the speed table’s
search functions to accelerate
searches and avoid sorting (since skip
lists are sorted). This defaults to “in-
dexed 0”, i.e. the field is not generated
with index support.

• notnull

If notnull is specified as true, the code
generated for the speed table will not
have code for maintaining an out-of-
band null/not-null status created for it,
increasing the performance of ma-

3

2 Additional data types can be added, although over Speed Tables’ evolution that has become an increasingly complicated undertaking.

nipulating fields for which out-of-band
null support is not needed. Defaults to
“notnull 0”.

• default

If default is specified, the following
value is defined as the default value
and will be set into rows that are cre-
ated when the field does not have a
value assigned.
There is no default default value;
however if no default value is defined
and the field is declared as notnull,
strings will default to empty and num-
bers will default to zero.

• length

Currently only valid for fixedstring
fields, length specifies the length of
the field in bytes. There is no default
length; length must be specified for
fixedstring fields.

• unique

If unique is specified with a true value,
the field is defined as indexed, and an
index has been created and is in exis-
tence for this field for the current table,
a unique check will be performed on
this field upon insertion into the speed
table.

• key

If key is specified as true, this field will
become the key for the table. There
must be at most one “key” field, and it
currently must be a varstring. (Any
field type can be indexed but our Tcl-
adapted hashtables require strings as
indexes.) If no “key” field exists then
the key will not be exposed as part of
a row unless it is explicitly referenced
with the name “_key”.
Special Fields
Named fields may not begin with an
underscore (as these are reserved for
speed table internals), but there are
two special field names that may be
used in any place where a field is
specified:

• _key

If no field is specified as a key, this
name can be used to reference the
key for the row.

• _dirty

This is set whenever a field is modi-
fied, and may be explicitly cleared…
for example when a table is saved to a
TSV file in a search operation.

Example Speed Table Definition

package require speedtable

CExtension animinfo 1.1 {

CTable animation_characters {
 varstring name indexed 1 unique 0
 varstring home
 varstring show indexed 1 unique 0
 varstring dad
 boolean alive default 1
 varstring gender default male
 int age

4

 int coolness
}

}

• Speed tables are defined inside
the code block of the CExtension.

• Executing this will generate table-
specific C functions a Tcl C lan-
guage extension named Animinfo,
compile it along with support code
and link it it into a shared library.

• Multiple speed tables can be de-
fined in one CExtension definition.

• No matter how you capitalize it, the
package name with be the first
character of your C extension
name capitalized and the rest
mapped to lowercase.

• The name of the C extension fol-
lows the CExtension keyword, fol-
lowed by a version number, and
then a code body containing table
definitions.

Loading Your Speed Table-
Generated C Extension
After sourcing in the above definition,
you can do a
 package require Animinfo
or
package require Animinfo 1.1

and Tcl will load the extension and
make it available.
It is not necessary to re-execute the
CExtension definition to use it again,
but it is always safe (and efficient) to
do so -- we detect whether or not the
C extension has been altered since
the last time it was generated as a
shared library, and avoid the compila-

tion and linking phase when it isn't
necessary.
Sourcing the above code body and
doing a package require Ani-
minfo will create one new command,
animation_characters, corresponding
to the defined table. We call this
command a meta table or a creator
table.
animation_characters create
t creates a new object, t, that is a Tcl
command that will manage and ma-
nipulate zero or more rows of the ani-
mation_characters table.
You can create additional instances of
the table using the meta table's create
method. All tables created from the
same meta table operate independ-
ently of each other, although they
share the meta table data structure
that speed table implementation code
uses to understand and operate on
the tables.
You can also use set obj [anima-
tion_characters create #auto] to
create a new instance of the table,
without having to generate a unique
name for it.

Basic Examples

All rows in a speed table have a
unique key value, which normally re-
sides outside of the table definition
itself. The simplest way to create or
modify a row is with the set operation.
Performing a set on a speed table per-
forms an update or insert:
t set shake \
 name "Master Shake" \
 show “Aqua Teen Hunger Force”

5

If there is no row in the table with
“shake” as a key 3, this creates a new
row in the speed table t, otherwise it
updates the current value of the row
having the key “shake” with a new
name and show.
We can set other fields in the same
row:
t set shake age 4 coolness -5

And increment them in one operation
with “incr”:
% t incr shake age 1 coolness -1

5 -6

You can fetch a single value naturally
with “get”...
if {[t get $key age] > 18} {...}

Or can get all the fields in the row, in
the order they were defined in the cta-
ble definition:
puts [t get shake]
{} {} {} {} {} 1 male 5 -6

Forgot what fields are available?
% t fields
id name home show dad alive gender
age coolness

You can get a key-value list of fields,
suitable for passing to array set, us-
ing array_get:
array set data [t array_get shake]
puts “$data(name) $data(coolness)”

If a field’s value is null then the field
name and value will not be returned
by array_get. So if a field can be null,
you need to check for its existence
using info exists before trying to
use it or use array_get_with_nulls,
which will always provide all the fields’
values, substituting a null value string,

and typically the empty string) when
the value is null.
You can check if a key exists with ex-
ists:
t exists frylock
0

Or load a complete table from a file
tab-separated data with read_tabsep:
set fp [open
animation_characters.tsv]
t read_tabsep $fp
close $fp

Search

Search is one of the most useful ca-
pabilities of speed tables. Let’s use
search to write all of the rows in the
table to a save file:
set fp [open save.tsv]
t search -write_tabsep $fp
close $fp

Want to restrict the results to a certain
set of fields? Use the -fields option
followed by a list of the names of the
fields you want.
t search -write_tabsep $fp \
 -fields {name show coolness}

Sometimes you might want to include
the names of the fields as the first
line...
t search -write_tabsep $fp \
 -fields {name show coolness} \
 -with_field_names 1

Let’s find everyone who’s on the Ven-
ture Brothers show who’s over 20
years old, and execute code for each
result:
t search \
 -compare {
 {= show “Venture Brothers}

6

3 The key for a row has a name, “_key”, but it’s not exposed implicitly in operations on the default list of fields. It is also possible to use the “key”
attribute to make any single varstring

 {> age 20}
 } \
 -array data -code {
 parray data
 puts “”
}

Additional meta table methods

• animation_characters null_value \\N
- which sets the default null value for
all tables of this table type to, in this
case, \N.

• animation_characters method foo
bar - this will register a new method
named foo, which will be available to
all instances of the table. Invoking
the foo method will cause the bar
proc to be called with the arguments
being the name of the table followed
by whatever arguments were
passed.

For example, if after executing anima-
tion_characters method foo bar and
creating an instance of the anima-
tion_characters table named t, if you
executed
t foo a b c d

then proc bar would be called with the
arguments "t a b c d".
Where the table Is Built
The generated C source code, some
copied .c and .h files, the compiled .o
object file, and shared library are nor-
mally written in a directory called
build underneath the directory that's
current at the time the CExtension is
sourced, unless a build path is speci-
fied. For example, after the "package
require ctable" and outside of and
prior to the CExtension definition, if
you invoke
CTableBuildPath /tmp

...then those files will be generated in
the /tmp directory.

Note that the specified build path is
appended to the Tcl library search
path variable, auto_path, if it isn't al-
ready in there.
Methods for Manipulating Speed
Tables
The following built-in methods are
available as arguments to each in-
stance of a speed table:

get, set, array_get,
array_get_with_nulls, exists, de-
lete, count, foreach, type, import,
import_postgres_result, export,
fields, fieldtype, needs_quoting,
names, reset, destroy, statistics,
write_tabsep, read_tabsep

For the examples, assume we have
done cable_info create x.

• set

There are two ways to specify the
fields to set:
x set key field value \
 ?field value...?

or
x set key keyValueList

The key is unique. It can be any
string and is not normally a field of the
table. The following commands are
equivalent:
x set peter ip 127.0.0.1 \
 name "Peter da Silva" i 501
x set peter {
 ip 127.0.0.1
 name "Peter da Silva"
 i 501
}

Thus a natural way to pull an array
into a speed table row is:

7

% x set key [array get dataArray]

• fields

"fields" returns a list of defined fields,
in the order they were defined.

• field

"field" returns information about the
field attributes. Since we ignore attrib-
utes we don’t recognize, you can in-
clude your own key-value pairs and
access them using this method: field
getprop name returns the value of the
name attribute. field properties
returns a list of all attributes. field
proplist will return the names and
values of all the properties in the usual
name-value format.

• get

Get fields. Get specified fields, or all
fields if none are specified, returning
them as a Tcl list.
% x get peter

127.0.0.1 {} {Peter da Silva} {}
{} {} 501 {} {}

% x get peter ip name

127.0.0.1 {Peter da Silva}

• array_get

Get specified fields, or all fields if none
are specified, in "array get" (key-value
pair) format. Null fields will not be
fetched.
% x array_get peter

ip 127.0.0.1 name {Peter da Silva}
i 501

% x array_get peter ip name mac

ip 127.0.0.1 name {Peter da Silva}

• array_get_with_nulls

Get specified fields, or all fields, in “ar-
ray get” format, including null fields.

• exists

Return 1 if the specified key exists, 0
otherwise.
% x exists peter
1
% x exists karl
0

• delete

Delete the specified row from the ta-
ble. Returns 1 if the row existed, 0 if it
did not.
% x delete karl
0
% x set karl
% x delete karl
1
% x delete karl
0

• count

Returns the number of rows in the ta-
ble.

• batch

The batch command provides an effi-
cient way to perform a series of ctable
operations. It takes a list of ctable
commands (without the ctable name)
and returns a list of results. Each ele-
ment in the result list is a list of the in-
dex of the result, and a list of two val-
ues: the Tcl result code (for example,
0 for TCL_OK, 1 for TCL_ERROR)
and the result string (result or error
string).
% x batch {{set dean age 17}
{incr dean age 1} {incr brock age
foo}}

{{1 {0 18}} {2 {1 {expected inte-
ger but got “foo” while converting
age increment amount while proc-
essing key-value list}}}

Dean’s age to 17 produced no result.
Incrementing it returned the incre-

8

mented value (18), and trying to add
‘foo’ to Brock’s age produced an error.
Note that errors in batched commands
do not cause batch to return an error.
It is up to the caller to examine the re-
sult of the batch command to see
what happened: “batch” will only re-
turn an error in the event of bad ar-
guments such as an invalid “batch”
list.

• search

Search for matching rows and take
actions on them, with optional sorting.
Search is a powerful element of the
speed tables tool that can be lever-
aged to do a number of the things tra-
ditionally done with database systems
that incur much more overhead.
Search can perform brute-force multi-
variable searches on a speed table
and take actions on matching records,
without any scripting code running on
an every-row basis.
On a modern 2006 Intel and AMD ma-
chines, speed table search can per-
form, for example, unanchored string
match searches at a rate of sixteen
million rows per CPU second (around
60 nanoseconds per row).
Search4 has scads of options:

• -sort sortArg
Sort results based on the specified
field or fields. To sort a field in de-
scending order, put a dash in front
of the field name.

• -fields fieldList
Restrict search results5 to the
specified fields, which (among
other things) may produce a noti-
cable performance boost..

• -glob pattern
Perform a glob-style comparison
on the key, excluding the examina-
tion of rows not matching.

• -countOnly 16

Counts matching rows but does
not take any action based on the
count.

• -offset offset

• -limit limit
Like the SQL “offset” and “limit” pa-
rameters, these limit the results to
a section of the ctable. The results
are not well-defined without -sort
or -countOnly.

• -write_tabsep channel
Matching rows are written tab-
separated to the file or socket (or
postgresql database handle)
"channel".

• -with_field_names 1
If you are doing -write_tabsep,
-with_field_names 1 will
cause the first line emitted to be a
tab-separated list of field names.
• -compare list

Perform a comparison to select
rows.

9

4 Like berkeley ls.

5 Fields that are used for sorting and/or for comparison expressions do not need to be included in -fields in order to be examined.

6 All search parameters must have a value, so “-countOnly” requires the value “1”.

Compare expressions are speci-
fied as a list of lists. Each list con-
sists of an operator and one or
more arguments. Each expression
is applied to each row in turn, and
all expressions must match for the
search to succeed.
Here's an example:

$speedTable search -compare {
	
 {> coolness 50}
	
 {> hipness 50}
} ...

In this case you're selecting every
row where coolness is greater than
50 and hipness is greater than 50.
Most expressions are fairly easy to
understand:

• {false field}

• {true field}

• {null field}

• {notnull field}

Comparisons are type-
sensitive:

• {< field value}

• {<= field value}

• {= field value}

• {!= field value}

• {>= field value}

• {> field value}
String matching uses “glob”
operations:

• {match field expres-
sion}

• {match_case field ex-
pression}

• {notmatch field ex-
pression}

• {notmatch_case field
expression}

Range and are the most effi-
cient when performed on in-
dexed fields:

• {range field low hi}
List operations must be per-
formed on indexed fields, and
only one may be in a list. Yes,
this is not optimal and will be
changed in a future release:

• {in field valueList}

• -code codeBody
Run scripting code on matching
rows, along with one or more of
these options:

• -key keyVar
Make the key value of the
matched row be available in-
side the code block as keyVar.

• -get listVar
The fields of the row are avail-
able in the variable listVar.

• -array arrayName

• -array_with_nulls array-
Name

The fields are available as the
array arrayName.

• -array_get listVar

• -array_get_with_nulls
listVar

The fields are available in an “ar-
ray get” format list in listVar.
Search examples:

Write everything in the table tab-
separated to channel $channel

10

$speed table search
-write_tabsep $channel

Write everything in the table with
coolness > 50 and hipness > 50:

$speed table search\
 -write_tabsep $channel
 -compare {
 {> coolness 50}
 {> hipness 50}
}

Run some code every everything
in the table matching above:

$speed table search \
 -compare {{> coolness
50} {> hipness 50}} \
 -key key -array_get
data -code {
	
 puts "key -> $key,
data -> $data"
 }

• incr

Increment the specified numeric
values, returning a list of the new
incremented values
% x incr $key a 4 b 5
...will increment $key's a field by 4
and b field by 5, returning a list
containing the new incremented
values of a and b.

• type

Return the "type" of the object, i.e.
the name of the object-creating
command that created it.
% x type
cable_info

• key

Return the name of the “key” field
in the ctable (usually _key).

• makekey

Given a list of name-value pairs,
return the key value.

• methods

Return a list of defined methods
(commands) that the ctable can
handle. The speedtable API may
include extensions (such as the
ctable server) or implement ctable-
compatible classes independently
of ctables (for example, there’s a
STAPI definition for pgsql), so it
may be necessary to check
whether the STAPI-compatible ob-
ject that you are examining sup-
ports the commands you need.

• store

x store keyval_list
Stores the list in the ctable using
the key defined in the ctable defini-
tion, or using an autoincremented
numeric key compatible with
read_tabsep if the table’s key field
is not specified in the list.

• import_postgres_result

x import_postgres_result
pgTclResultHandle

Given a Pgtcl result handle, im-
port_postgresql_result will iterate
over all of the result rows and cre-
ate corresponding rows in the ta-
ble. This is fast as it does not do
any intermediate Tcl evaluation on
a per-row basis.

set res [pg_exec $connection \
 "select * from mytable"]
if {[pg_result $res -status] ==
"PGRES_RESULT_OK"} {
 x import_postgres_result \
 $res
}
$res destroy

11

• fieldtype

Return the data type of the named
field, such as varstring.

• needs_quoting

Given a field name, return 1 if it
might need quoting. For example,
varstrings and strings may need
quoting, while integers, floats, IP
addresses, MAC addresses, etc,
do not.

• names

Return a list of all of the keys in the
table. This is fine for small tables
but horribly inefficient for large ta-
bles; use search instead.

• reset

Clear everything out of the table.

• destroy

Delete all the rows in the table,
free all of the memory, and destroy
the object.

• read_tabsep

Read tab-separated entries from a
Tcl channel, with a list of fields
specified, or all fields if none are
specified.

set fp [open /tmp/output.tsv r]
x read_tabsep $fp
close $fp

The first column is normally the
key and is not included in the list of
fields. So if you name five fields,
for example, each row must con-
tain six columns.
Options:

• -glob pattern

If the key does not match, the row
is not inserted.

• -nokeys

The first column is not a key
column. If the table has a key
field defined, and that column is
in the fields being read, then it
will be used. Otherwise an
auto-incremented numeric key
will be generated for each row
and read_tabsep will return the
last key generated.
read_tabsep stops when it reaches
end of file OR when it reads an
empty line.

• index

Index actually creates the index for
fields with the indexed attribute.
This is a separate operation be-
cause it is far more created the in-
dices AFTER populating a large
table.
x index create foo 24

Creates a skip list index on field
"foo" and sets it to for an optimal
size of 2^24 rows. The size value
is optional. If there is already an
index present on that field, does
nothing.
x index drop foo

Drops the skip list on field "foo." If
there is no such index, does noth-
ing.
x index count foo

Returns a count of the skip list for
field "foo".
x index span foo
Returns a list containing the lexi-
cally lowest entry and the lexically

12

highest entry in the index. If there
are no rows in the table, an empty
list is returned.
x index indexable

...returns a (potentially empty) list
of all of the field names that can
have indexes created for them.
x index indexed

...returns a (potentially empty) list
of all of the field names in table x
that current have an index in exis-
tence for them, meaning that index
create has been invoked on that
field.

Performance Importing PostgreSQL
Results
On a 2 GHz AMD64 running
FreeBSD, speed tables can import
import about 200,000 10-element
rows per CPU second, i.e. around 5
microseconds per row. Importing is
slower if one or more fields has an in-
dex.
Speed Table Search Performance
An example of brute force searching
that there isn’t much getting around
without adding fancy full-text search
features is unanchored text search.
Even in this case, with speed tables’s
fast string search algorithm and quick
traversal during brute-force search,
the authors have observed 60 nano-
seconds per row, thus searching
about sixteen million rows per CPU
second on circa-2006 AMD64 ma-
chines.
Although many optimizations are be-
ing performed by the speed table
compiler, further performance im-

provements can be made without in-
troducing huge new complexities, per-
turbations, etc.
Indexed Searches
Many searches can be greatly accel-
erated through the use of indexes on
appropriate fields. Please consult the
documentation for which operators
and under what conditions indexes
cause searches to be accelerated.
Client-Server Speed Tables
Tables created with Speed Tables are,
by default, local to the Tcl interpreter
that created them.
Early in our work it became clear that
we needed a client-server way to talk
to Speed Tables that was highly com-
patible with accessing Speed Tables
natively.
The simplicity and uniformity of the
speed tables interface and the rigor-
ous use of key-value pairs as argu-
ments to search (requiring values in
all cases) made it possible to imple-
ment a Speed Tables client and server
in around 500 lines of Tcl code.
This implementation provides identical
behavior for client-server speed tables
as direct speed tables for most speed
table methods.
Stored Procedures
There is a Tcl interpreter on the server
side, pointing to the possibility of de-
ploying server-side code to interact
with Speed Tables7, although there
isn’t any formal mechanism for creat-
ing and loading server-side code at
this time.

13

7 Fairly analogous to stored procedures in a SQL database, Tcl code running on the server’s interpreter could perform multiple speed table actions
in one invocation, reducing client/server communications overhead and any delays associated with it.

Speed Tables’ register method ap-
pears to be a natural fit for implement-
ing an interface to row-oriented
server-side code invoked from a cli-
ent.
Speed Tables can be operated in safe
interpreters if desired, as one part of a
solution for running server-side code,
should you choose to take it on.
Dedicated Speed Table Servers
Once you start considering using
Speed Tables as a way to cache tens
of millions of rows of data across
many tables, if the application is large
enough, you may want to consider
having machines basically serve as
dedicated Speed Table servers.
Take generic machines and stuff them
with the max amount of RAM at your
appropriate density/price threshold.
Boot up your favorite Linux or BSD off
of a small hard drive, thumb drive, or
from the network. Start up your
Speed Tables server processes, load
them up with data, and start serving
speed tables at far higher perform-
ance that traditional SQL databases.
This is a lot stronger than memcached
because memcached is basically just
a directory of files. Here, at the very
least, you can define fields that con-
tain metadata and use search to look
stuff up.
Speed Table URLs
sttp://foo.com/bar
sttp://foo.com:2345/bar
sttp://foo.com/bar/snap
sttp://foo.com:1234/bar/snap
stty://foo.com/bar?moreExtraStuff=
sure

The default speed table client/server
port is 11111. It can be overridden as
above. There’s a host name, an op-

tional port, an optional directory, a ta-
ble name, and optional extra stuff.
Currently the optional directory and
optional extra stuff are parsed, but ig-
nored.
Example Client Code
package require speedtable_client

remote_speedtable \
speedtable://127.0.0.1/dumbData t

t search -sort -coolness -limit 5
-key key -array_get_with_nulls
data -code {
 puts “$key -> $data”
}

Example Server Code
When registering a table on the server
side, use a wildcard for the host:
package require speedtable_server
create a ctable ‘t’ here.
::speedtable_server::register \
speedtable://*/dumbData t

That’s all there is to it. You have to
allow the Tcl event loop to run, either
by doing a vwait or by periodically call-
ing update if your application is not
event-loop driven, but as long as you
do so, your app will be able to server
out speedtables.
Performance
Performance of client-server speed
tables is necessarily slower than that
of native, local speed tables. Network
round-trips and the Tcl interpreter be-
ing involved on both the client and
server side for every method invoked
on a remote speed table inevitably
impacts performance.
That being said, a couple of tech-
niques, batching and using searches
in places of gets can have a dramatic

14

impact on client/server speed table
performance.
Batching
Consider a case where you know
you’re going to set values in dozens to
hundreds of rows in a table. You can
batch up the sets into a single batch
set command.
$remoteCtable set key1 var value
?var value...?
$remoteCtable set key2 var value
?var value...?
$remoteCtable set key3 var value
?var value...?

$remoteCtable batch {
 set key1 var value ?var
value...?
 set key2 var value ?var
value...?
 set key3 var value ?var
value...?
}

In the second example, all of the set
commands are sent over in a single
remote speed table command, proc-
essed as a single batch by the speed
table server (with no Tcl interpreter in-
volvement in processing on a per-
command basis inside the batch). A
list is returned comprising the results
of all of the commands executed.
(See the batch method for more de-
tails.)
Most speed table commands can be
batched, except for the search meth-
ods (this is not checked, though, and
the results are undefined). In particu-
lar, get, delete, and exists can be
pretty useful.
Use “search” Instead of “get”
Another common use of speed tables
is to retrieve values from rows in some

kind of loop. Perhaps something
like...
foreach key $listOfRows {
 set data [$t get $key]
 ...
}

In the above example, every “get”
causes a network roundtrip to the
speed table server handling that table.
If we substitute a search for the
above, we can get all the data for all
the rows in a single roundtrip. The “in”
compare method can be particularly
useful for this...
$ctable search -compare {in key
$listOfRows} -array_get data {

}

Shared Memory Speed Tables
Client-server speed tables can take a
fairly big performance hit, as a sizable
amount of Tcl code gets executed to
make the remote speed table behave
like a local one.
While they’re still pretty fast, server
actions are inherently serialized be-
cause of the single-threaded access
model afforded using standard Tcl
fileevent actions within the Tcl event
loop.
When the speed table resides on the
same machine as the client, particu-
larly in this era of relatively inexpen-
sive multiprocessor systems, it would
be valuable for a client to be able to
access the speed table directly
through shared memory, bypassing
the client/server mechanism entirely.
Speed tables can use shared memory
to accelerate concurrent access by
multiple processes. The design objec-
tive was to provide a way for same-
server clients to access the speed ta-

15

ble through shared memory while re-
taining the ability to build and use
speed tables without using shared
memory at all.
When a speed table is instantiated for
use with shared memory, the entire
table, all keys and indexes are stored
in shared memory, and may be used
when there is sufficient memory avail-
able.
Tricky synchronization issues surfaced
quickly while development this. For
instance, what should we do if a row
gets changed or added while a search
is being performed? We don’t want to
completely lock out access to the ta-
ble during a search. Thus we have to
really deal with database updates dur-
ing searches, which raise referential
integrity issues and garbage collection
/ dangling pointer issues. Many
searches, such as ones involving re-
sults sorting, collecting a set of point-
ers to the rows that have matched.
Those rows cannot be permitted to
disappear behind search’s back.
Also search tables were already in
heavy production with tables contain-
ing tens of millions of rows. This work
had to be rock solid or it wouldn’t be
usable.
To simplify the problem, we decided to
funnel writes through the client/server
mechanism and only allows reads and
searches to occur through shared
memory. In many cases all changes
are handled by a single process any-
way, and no updates need be sent
from clients.
We take advantage of the skiplist
code’s ability to support lockless syn-
chronization between processes shar-
ing memory. Our approach is to main-

tain metadata about in-progress
searches in shared memory and have
a cycle number that increases as the
database is updated. When a search
begins, the client copies the current
cycle number to a word in shared
memory allocated for it by the server.
As normal activity causes rows to be
modified, updated, or deleted by the
server, the cycle number they were
modified on is stored in the row. If
rows (or any other shared memory ob-
ject, such as strings) are deleted, they
are added to a garbage pool along
with the current cycle, but not actually
freed for reuse until the server gar-
bage collects them on a later cycle.
If the client detects that a row it’s ex-
amining has been modified since it
started its search, it restarts the
search operation. The server makes
sure to update pointers within shared
memory in an order such that the cli-
ent will never step into a partially
modified structure. This allows the
whole operation to proceed without
explicit locks, so long as pointer and
cycle updates are atomic and ordered.
Garbage collection is performed by
locating deleted memory elements
that have a cycle number is lower than
the cycle number of any client cur-
rently performing a search.
To use shared memory support, a new
parameter was added to the “create”
command, specifying that a table was
shared as a master or a reader. This
parameter is followed by a list of op-
tions that describe the size of the table
and how it is built.
STAPI - the Speed Table API
STAPI creates the speedtables API,
which is used for a variety of table-like

16

objects. This includes remote speed
tables through ctable_server and SQL
databases. There are two main sets of
routines in STAPI, and they’re not
normally used together.
• st_server, a set of routines for

automatically creating a speed ta-
ble from an SQL table as a local
cache for the table, or as a work-
space to be used for preparing
rows to be inserted into the table.
It’s normally used in a cta-
ble_server task providing a local
read-only cache for a remote data-
base for many client processes.

• st_client, which provides the gen-
eral interface for creating STAPI
objects identified by URIs.
The primary mechanism for us-
ing STAPI as a client is through
::stapi::connect, which con-
nects to a speed table server or
other database providing a
speed table interface via a URI.

::stapi::connect uri ?-name
value...?

Only one option is normally required:
-key col

Define the column used to
generate the key.

If a key is not provided, some STAPI
capabilities may not be available.
::stapi::register method \
transport_handler

 register a transport method for
::stapi::connect
At this time the following meth-
ods have been defined in
STAPI:
Using a ctable server via sttp
(client/server)

package require st_cli-
ent

sttp://[host:port]/[dir
/]table[/stuff][?stuff]

Using a ctable server via sttp
(shared memory)

package require
st_shared

shared://port/[dir/]tab
le[/stuff][?stuff]

Access a speed table server on
localhost, using shared mem-
ory for the "search" method and
the client-server speed table
transfer protocol for all other
methods.
An additional option is used:

-build directory

The ctable built by the
server must be in
auto_path, or in the di-
rectory defined by the
"-build" option.

Using a PostgreSQL database
directly

package require st_cli-
ent_pgtcl

sql://connection/table[
/col[:type]/col...][?pa
ram¶m...]

Create a stapi interface
directly to a PostgreSQL
table

The connection part has not
been implemented yet. It will be
something like
[user[:password]]@[host:]dat
abase

17

If no columns are listed, all col-
umns of the table will be re-
turned.
Parameters are name=value
style, just like in HTTP. A key
column should be defined.
Pseudo-columns can be de-
fined here, too, with parameters
like -column=sql_code or
_key=column_name.

Using an already opened
speed table

package require st_cli-
ent

If the URI is not URI format, it
assumes it's an object that pro-
vides stapi semantics already...
typically a ctable, an already-
opened ctable_client connec-
tion, or the result of a previous
call to ::stapi::connect. It que-
ries the object using the meth-
ods command, and if neces-

sary creates a wrapper around
the ctable to implement the ex-
tra methods that STTP pro-
vides.

STDisplay - Display Functions for
the web
STDisplay is derived from Rivet’s DI-
ODisplay, and the calling sequence is
similar. For example:
set display [
 ::STDisplay #auto -uri \
 sql:///history?_key=time
]

$display field time
$display field account
$display field serial
…
$display field explanation
$display show

Since STDisplay works with anything
that can be exposed in the Speed Ta-
ble API, it’s an efficient and conven-
ient mechanism to browse many kinds
of database and database-like tables
on the web.

Speedtable C-level implementation
You can interact with any speed table,

regardless of its composition, from C,
by making standardized calls via the
speed table’s methods (pointers to
functions) and speed table’s creator
table structures.

Varstrings are char * pointers and a
length. We allocate the space for
whatever string is stored and store the

address of that allocated space. We
avoid malloc/frees when possible by
reusing the space when values
change and the string being store fits.
Default values are represented with a

18

null pointer., while fixed-length strings
are generated inline.
The null field bits and booleans are all
generated together and should be
stored efficiently by the compiler. We
rely on the C compiler to do the right
thing with regards to word-aligning
fields as needed for efficiency.
You can examine the C code gener-
ated -- it's quite readable. If you didn't
know better, you might think it was
written by a person rather than a pro-
gram.
How we invoke the compiler can be
found in gentable.tcl. We currently
only support FreeBSD and Mac OS X,
and a general solution will likely in-
volve producing a GNU configure.in
script and running autoconf, configure,
etc. We’d really appreciate some help
on this.
License
The Speed Tables package is distrib-
uted under the same permissive Ber-
keley license that Tcl uses.
Obtaining Speed Tables
A SourceForge project has been re-
quested for speed tables and should
be available by September 20th,
2007.
http://sourceforge.net/projects/speedta
bles
Included with speed tables is a 65
page developer’s manual. A test suite
includes dozens of tests.
Request For Participation
Speed tables are working well, for the
authors as least. An autoconf-style
configuration system would be of
great value. We’d also like a mecha-

nism for defining C-based search
comparison routines, and someone to
use and construct examples for inter-
facing to C directly.
Speed tables could be a useful addi-
tion to other scripting languages as
well, and of course additional docu-
mentation would always oblige, as
well as manual translations into other
langauges, testing for different lo-
cales, and so forth.
Summary
Speed tables powerfully extends Tcl’s
ability to access and manipulate data,
providing unique capabilities, far
higher performance, and greater
memory density over traditional Tcl-
based approaches. Its permissive li-
cense makes it feasible for use in a
wide range of projects that need
higher performance storage and
searching than available from a SQL
database or from ad hoc methods.

19

http://sourceforge.net/projects/speedtables
http://sourceforge.net/projects/speedtables
http://sourceforge.net/projects/speedtables
http://sourceforge.net/projects/speedtables

