
The great (internal) Var reform of 2007

Miguel Sofer
Universidad Torcuato Di Tella

September 15, 2007

Abstract

The Var struct used as internal representation for Tcl’s
variables currently contains six pointers and 2 integers, or
32 bytes on a 32-bit platform. For variables in hashtables,
be they namespace variables or array elements, a hash en-
try structure consuming a further minimum of 24 bytes
(but typically 28) is also maintained.

These requirements reflect a history of the structure,
and are far from optimal. We will explain the require-
ments that have to be satisfied, how they gave rise to this
structure, and a way to thin them down considerably: com-
piled variables are reduced to 8 bytes (75% reduction),
hashtable variables to a grand total of 24 bytes (60% re-
duction)1. Further performance advantages of the new im-
plementation will also be described.

1 Introduction

Variables are among the most-often accessed structs in
Tcl2. Their impact on Tcl’s performance is undeniable3,
both in terms of runtime and memory footprint. The cur-
rent Var struct4 in Tcl, defined in tclInt.h and reproduced
in Figure 1, is not optimal: it is too large and its cache-
friendliness is further handicapped by an unlucky layout,
cache-unfriendly for every r/w operation.

This paper describes the motivation and design deci-
sions in the new variable code in Tcl8.5, implemented in
Patch #1750051. Section 2 describes the definition of vari-
ables in current Tcl, section 3 the newly defined structs in
8.5. We describe the advantages of the new code in section
4, and its disadvantages in section 5. Section 6 describes
related work that will not appear in Tcl8.5 and remains to
be done in the future.

1A partial implementation is already committed to HEAD, a full im-
plementation may or may not appear in Tcl8.6

2Commands may profit from a similar reform in the future
3tbd: precise measurements
4from Tcl8.0 up to Tcl8.5a6

2 The Var struct in Tcl8.x (x<5)
The Var struct currently requires 32 bytes5 and accomo-
dates in the single struct both storage types for variables:
compiled locals and variables held in a hashtable (either
namespace variables or array elements). The necessity of
the different fields can be classified as follows

1. flags, value: the really necessary fields for normal
read/write operation. The first maintains the current
state and type of the variable, the second its current
value.

2. name, nsPtr, hPtr: necessary so that compiled vari-
ables (name) and hashtable variables (nsPtr, hPtr)
can find out their names. Knowing the name is re-
quired for error messages and trace processing. Note
that at most two of these fields are non-NULL for any
variable.

3. refCount, hPtr: needed for lifetime management
of the struct, which is only really necessary for
hashtable variables.

4. searchPtr, tracePtr: necessary to store searches and
traces currently defined on this variable.

Furthermore, hashtable variables require the maintenance
of a Tcl_HashEntry struct that is allocated separatedly and
requires either 24 bytes (for variable names of up to three
characters), 28 bytes (between 4 and 7 characters), 32
bytes (between 8 and 11 characters), and so on.

The claim of suboptimality is based on the following
observations:

• the fields name, nsPtr, hPtr, refCount, tracePtr6 and
searchPtr are rarely accessed, only flags and value
are needed for normal r/w operation

5all calculations done for 32-bit platforms as illustration
6tracePtr is actually tested against NULL at each r/w operation, but

this can be avoided

1



typedef struct Var {
union {

Tcl_Obj *objPtr; /* The variable’s object value. Used for
* scalar variables and array elements. */

Tcl_HashTable *tablePtr;/* For array variables, this points to
* information about the hash table used to
* implement the associative array. Points to
* ckalloc-ed data. */

struct Var *linkPtr; /* If this is a global variable being referred
* to in a procedure, or a variable created by
* "upvar", this field points to the
* referenced variable’s Var struct. */

} value;
char *name; /* NULL if the variable is in a hashtable,

* otherwise points to the variable’s name. It
* is used, e.g., by TclLookupVar and "info
* locals". The storage for the characters of
* the name is not owned by the Var and must
* not be freed when freeing the Var. */

Namespace *nsPtr; /* Points to the namespace that contains this
* variable or NULL if the variable is a local
* variable in a Tcl procedure. */

Tcl_HashEntry *hPtr; /* If variable is in a hashtable, either the
* hash table entry that refers to this
* variable or NULL if the variable has been
* detached from its hash table (e.g. an array
* is deleted, but some of its elements are
* still referred to in upvars). NULL if the
* variable is not in a hashtable. This is
* used to delete an variable from its
* hashtable if it is no longer needed. */

int refCount; /* Counts number of active uses of this
* variable, not including its entry in the
* call frame or the hash table: 1 for each
* additional variable whose linkPtr points
* here, 1 for each nested trace active on
* variable, and 1 if the variable is a
* namespace variable. This record can’t be
* deleted until refCount becomes 0. */

VarTrace *tracePtr; /* First in list of all traces set for this
* variable. */

ArraySearch *searchPtr; /* First in list of all searches active for
* this variable, or NULL if none. */

int flags; /* Miscellaneous bits of information about
* variable. See below for definitions. */

} Var;

Figure 1: The Var struct in Tcl8.x (x<5)

2



• the fields tracePtr and searchPtr are NULL most or
all of the time for most variables.

• the normal r/w operations7 access the fields flags, tra-
cePtr and value (in that order): first the end of the
struct, then the beginning.

• creating a new variable in a hashtable requires two
separate calls to malloc() - one for the Var, one for the
Tcl_HashEntry. As these two structs (can) have the
same lifetime and are in 1-1 relationship they could
be allocated together, reducing the necessary calls to
malloc/free by 50% on variable creation and destruc-
tion.

3 The Var structs in Tcl8.5
The layout in memory and access modes for variables has
been completely redesigned in Tcl8.58, with significant
reductions in the required memory and better memory ac-
cess patterns.

In order to do this, two different structs have been de-
signed for variables: Var (Figure 2) for compiled local
variables, and VarInHash (Figure 3) for variables kept in
hashtables. The most frequent operations, reading and
writing, are impervious to the difference as they only ac-
cess the Var part; the difference is only relevant for opera-
tions related to the variable’s lifetime management: creat-
ing a link to the variable and unsetting it.

The details are described in this section.

3.1 Removing tracePtr and searchPtr
As observed previously, the fields tracePtr and searchPtr
are NULL most or all of the time for most variables. The
first one is accessed at each variable r/w operation in order
to determine if the variable is traced, so that the correct
r/w procedure can be used. That is: the fact that these
fields are NULL or not is part of the state of the vari-
able. By defining new flag bits to record the complete
state of the variable, the linked lists currently held at tra-
cePtr and searchPtr can be moved elsewhere: only if the
corresponding bits are set will their values be accessed.

Two special hash tables (hanging from the Interp struct)
have been designed to hold these linked lists. The trace
and search code has been modified to maintain the new
flag bits.

As an added advantage, the state of the variable can now
distinguish the type of trace. This means for instance that

7the modes of access in decreasing order of frequency are: read,
write, create, destroy, create a link to it.

8after Tcl8.5a6

reading a variable that carries a trace on write can proceed
at full speed, without traversing the list of traces to (fail
to) find a possible read trace.

3.2 Compiled local variables: most fields re-
moved

Each time a proc is invoked, an array of variables is allo-
cated on the Tcl stack to hold the body’s local variables.
These variables are normally accessed by indexing into
this array, much faster than an access by name9.

The lifetime management of the required memory is
fairly simple: it is reserved when the proc is invoked and
returned when the proc returns. Compiled local variables
have no use for the refCount and hPtr fields, they are gone.

The name of a local variable is unqualified, the nsPtr
field is not needed. Furthermore, the name does not
change at each invocation, and it can safely be held in ei-
ther the Proc or ByteCode structs10.

Losing this field also simplifies the initialisation of local
variables during a proc’s invocation. The new flag bits and
semantics were designed so that a local variable has to be
initialised to {0,NULL}11, which can be done by a fast
memset.

As a result compiled variables only use 8 bytes, as seen
in Figure 2, for a 75% size reduction.

3.3 Variables in hashtables: thinned
down and consolidated with the en-
try, Tcl_Obj keys

Namespace variables require knowledge of their names-
pace in order to reconstruct their fully qualified name. But
they have a pointer hPtr to their hash table entry, which
in turn has a pointer tablePtr to the namespace’s hash ta-
ble. We have chosen to store a pointer to the namespace
right after the hash table12, so that every variable can find
its namespace without needing to store nsPtr in the struct.
As name was always NULL for these variables, it is gone
too.

The Var structure is now allocated together with its cor-
responding Tcl_HashEntry, which requires that their life-
times be tied together.

9this is among the main performance wins of bytecompiling
10in the current implementation it is held in both; this choice was made

in order to minimise the changes that might impact extensions.
11the proc arguments obviously require a different initialisation. Fur-

thermore, variable resolvers as defined e.g. by incrTcl still require spe-
cial var-by-var processing

12a new TclVarHashTable struct has been defined with two fields: a
Tcl_HashTable and a Namespace*

3



typedef struct Var {
int flags; /* Miscellaneous bits of information about

* variable. See below for definitions. */
union {

Tcl_Obj *objPtr; /* The variable’s object value. Used for
* scalar variables and array elements. */

TclVarHashTable *tablePtr;/* For array variables, this points to
* information about the hash table used to
* implement the associative array. Points to
* ckalloc-ed data. */

struct Var *linkPtr; /* If this is a global variable being referred
* to in a procedure, or a variable created by
* "upvar", this field points to the
* referenced variable’s Var struct. */

} value;
} Var;

Figure 2: The Var struct in Tcl8.5

typedef struct VarInHash {
Var var;
int refCount; /* Counts number of active uses of this

* variable: 1 for the entry in the hash
* table, 1 for each additional variable whose
* linkPtr points here, 1 for each nested
* trace active on variable, and 1 if the
* variable is a namespace variable. This
* record can’t be deleted until refCount
* becomes 0. */

Tcl_HashEntry entry; /* The hash table entry that refers to this
* variable. This is used to find the name of
* the variable and to delete it from its
* hashtable if it is no longer needed. It
* also holds the variable’s name. */

} VarInHash;

Figure 3: VarInHash struct

4



The hash tables for variables now use Tcl_Obj keys, as
opposed to the previous string keys13, insuring that the
size of the VarInHash struct does not depend on the length
of the variable’s name14.

3.4 Simplified flag semantics

The reform provided the oportunity to simplify the flag
semantics by removing some previously allowed possi-
bilites:

• VAR_SCALAR removed: scalar is the default state
of a variable, signaled by the absence of array or link
bits. The previous scheme allowed for a variable to
be neither scalar nor array nor link.

• VAR_UNDEFINED removed: a variable is unde-
fined precisely when its value is NULL. The previous
scheme allowed a non-NULL value (garbage)

4 What has been won

The variable reform is a big change, slightly traumatic (see
next section). The reasons that make it worthwhile in the
author’s view include:

4.1 Reduced memory consumption for vari-
ables

Assuming variable names between 4 and 7 characters, 24
bytes per variable are saved:

Bytes
Type Tcl8.4 Tcl8.5 Reduction
Local 32 8 24 (75%)

Namespace 60 36 24 (40%)
Array elem. 60 36 24 (40%)

The savings increase for longer variable (or array ele-
ment) names.

4.2 Cache friendliness

• normal r/w access addresses the first two fields in the
struct, in order

• the table of compiled locals is 75% smaller, reducing
the data cache pressure for the bytecode engine

13the variable access code is as of this writing not yet fully optimised
for this change

14further advantages are described below

• joint allocation of variables and their hash table en-
tries allows to eliminate one level of indirection in
the variable’s access: instead of following the entry’s
clientData (which hold a pointer to the Var), the Var
pointer is computed from the entry’s using a known
offset.

4.3 Reduced impact of traces
Up to Tcl8.4 access to a traced variable was always
slower: even if the current access mode was not itself
traced, this could only be discovered by traversing the
linked list of traces. The new code proceeds at full speed
when there is no trace relevant for the current access mode

4.4 Faster creation and destruction of vari-
ables

Typically a single call to malloc() on creation, and a single
call to free() on destruction

• Reuse the Tcl_Obj in the creation request as the hash
table key: increase its reference count instead of al-
locating a new string

• Decrease the name’s reference count on destroying
the variable; if the name is shared, no additional calls
to free()

4.5 Faster access to variables15

The Tcl_Obj keys allow for faster lookup: shared literals
increase the probability of a very cheap test in the match-
ing case, the fact that the string length is stored allows
for faster failure in many cases. Better possibilities for
caching of resolved variable names.

5 TANSTAAFL

5.1 Added complication in trace code
The trace code has to maintain the trace-related bits in
the Var’s flags, while previously it would just add/remove
items from the front of the trace linked list

5.2 Added complication of variable code
More code is dependent on the flag values. For example,
compiled local variables do not have a refCount field. All
the code that manages the reference count of variables has

15not yet fully optimised as of today

5



to check the storage class of the variable (a special flag bit)
to determine if a r/w of the reference count is necessary.

5.3 A new hashtable type
The hash table used to store variables is defined via a new
tclVarHashKeyType. However, the current implementa-
tion uses the standard Tcl hash tables with a custom key
type.

5.4 Slower trace invocation
The invocation of variable traces is somewhat slower, as it
involves a new search in a hash table. This is deemed to be
more than compensated with the faster access to variables
when the access mode itself is not traced.

5.5 Breaking “rogue” extensions
Extensions that include tclInt.h and interact directly with
the core’s variables, variable hash tables or bytecodes are
broken. The code of incrTcl, XOTcl and tbcload has been
adapted to the new core; it is not known if more extensions
are impacted.

As a general rule, it is relatively straightforward to adapt
an impacted extension to restore source compatibility.

Binary compatibility in the sense that “a previously
compiled extension runs in a current core” is essentially
impossible. It is possible16 to create “binary compatible
sources”, in the sense that a newly compiled extension can
run on both a Tcl8.4 and Tcl8.5 core. This has been done
for the three extensions mentioned above.

It is to be stressed that normal extensions that only in-
clude tcl.h suffer no effects, and that most extensions that
do use tclInt.h (including Tk!) are also immune.

6 Remaining (somewhat) related
rewrites

There are other related modifications that may (or may
not) occur in the future - either Tcl8.6 or Tcl9. Among
them

6.1 Optimisation of variable lookup and
caching of variable names

Variable lookup and the caching of variable names has not
yet been optimised for the reformed code17. This optimi-

16with some nasty hacks
17and is clearly suboptimal for some access patterns, see Bug 1793601

sation will occur before the Tcl8.5 release. It is expected
to provide significant speedups.

6.2 Specialized hash tables for variables
The reform described here uses Tcl’s standard hash ta-
bles. These are versatile and performant, but impose some
penalties on variables that could be avoided with special-
ized hash tables:

• the entries are “too big” for our purposes, three more
fields could be eliminated for a further 33% reduction
in the VarInHash size (Figure 4), from 36 to 24 bytes.

• the hash table code owes its versatility to its generous
usage of indirect calls; coding specifically for vari-
able hash tables would allow faster access

6.3 commandReform
The second most critical struct in Tcl is the command. The
core has a sophisticated mechanism for caching command
names, and trying to avoid renewed lookups18. However,
lookups by name are still frequent.

A reform of the command lookup code similar to the
one described in this paper will be tested. The memory
footprint of commands likely being much smaller than
that of variables, and command creation/destruction being
rarer than the analogon for variables, the payoff in terms
of memory management is unlikely to exist.

On the other hand, especially if a reform manages to
also reduce the cost of verification of a cached pointer’s
validity, the pay off in terms of increased command dis-
patch performance could be sizable.

6.4 objReform
I lied: the most time critical struct in Tcl is not Var, it
is Tcl_Obj. Modifying Tcl_Obj handling is however very
difficult without breaking every extension out there. Some
experimental attempts that could pay off handsomely (but
may be infeasible in Tcl8.x) include:

• Improving the alignment of Tcl_Objs, using the
padding to store small strings within the Tcl_Obj
struct itself (see Patch 1772004). This reduces in-
direction as well as calls to malloc()/free()

• Usage of tagged pointers to Tcl_Objs within the byte-
code engine to store “small” integers to reduce indi-
rections

18already improved in Tcl8.5 to reduce sharing of command name lit-
erals in different namespaces

6



typedef struct VarInHash {
Var var;
int refCount; /* Counts number of active uses of this

* variable: 1 for the entry in the hash
* table, 1 for each additional variable whose
* linkPtr points here, 1 for each nested
* trace active on variable, and 1 if the
* variable is a namespace variable. This
* record can’t be deleted until refCount
* becomes 0. */

TclVarHashTable *tablePtr; /* Pointer to the table containing this
* variable */

Tcl_Obj *keyPtr; /* Pointer to the object containing the
* name of this variable. */

struct Var *nextPtr; /* Pointer to the next variable in this
* same bucket (only necessary for certain
* types of hashtables).

} VarInHash;

Figure 4: Future VarInHash struct

7 Conclusion
Internally there are two different kinds of Tcl variables:
compiled locals which reside in an array, and the rest
which live in hash tables. Tcl8 defined a common struct
to describe both, with some fields that are only useful for
one kind and are wasted in the other. Additionally, part of
the variable’s state is kept in extra fields that are NULL for
most variables most of the time.

Different specialised structs for each kind, and a re-
design that insures that the state is fully described by the
flag values, permitted a very significant reduction in the
memory footprint of variables. There is no space/time
tradeoff involved as there are also speed gains (not of the
same magnitude).

This major change respects all public interfaces; how-
ever, a few extensions that use internal apis lost both bi-
nary and source compatibility and required an adaptation.

A similar revision of other important structures and ac-
cess patterns in Tcl will be explored. The expectation is
that there is a possible payoff in terms of speed, but no
major impact on the memory footprint is to be expected.

7


