Tcl/Tk Tools for EPICS Control Systems.

R. Fox

National Superconducting Cyclotron Laboratory
Michigan State University
East Lansing, Ml 48824-1321

Abstract—The Experimental Physics and Industrial Control
System (EPICS) is a control system in wide use irhe¢ control
systems of accelerator laboratories across the warlas well as in
large-scale particle physics experiments. This pap will describe
a Tcl package that provides access to EPICS contrsystems and a
set of widgets that allow user interfaces to EPICSystems to be
easily constructed. The extension will be compareahd contrasted
with the et_wish EPICS aware extended wish, and aigtification
for choosing to write a new extension will be given

I. INTRODUCTION AND OUTLINE

The Experimental Physics and Industrial Controt&ys
(EPICS)[1] is a distributed control system thatésvily used
in nuclear and high energy physics experiments and
accelerators. Los Alamos National LaboratoriesArgbnne
National Laboratories originally developed EPICSH #me
EPICS organization supports further development and
international use.

The National Superconducting Cyclotron Laboratdry a
Michigan State University is the leading acceleréaboratory
in unstable heavy ion research in the United Statelsone of
the leaders in the world. Our accelerator and biazen
controls are built around the EPICS control syst&averal
facility experimental devices, such as the S80@tspmeter
[2], also feature EPICS in their slow control paths

Recently several factors pushed me to investidteise of Tcl
to produce applications that interface with the NEPICS
system:

1. In my role as the software lead for the dataigsitipn
system, | was getting an increasing number of reigue
to interface the data taking system in a read-only
manner with data that could be obtained from the
EPICS system. These requests ran the gamut frem on
line monitoring of EPICS system channels during
experimental data taking to inclusion of time vagyi
control system parameters in the main event flow.

! The National Science Foundation under grant nunfigly0606007
funded this work.

The Gas Stopping Cell[3], an experimental system
which performs high precision mass and half-life
measurements on unstable nuclei could be run more
efficiently and more effectively if it had availabto it

a system that sequenced several data taking ruies wh
making new controls settings for the beam-line gasl
cell EPICS parameters between runs.

The accelerator controls development groupeat th
NSCL, after several years of “Windows only” console
subsystems was looking for ways to create portable
console applications.

The accelerator operators were looking for viayget
faster turn-around for desired changes in console
applications and new console application
development.

The remainder of this paper is organized as follows

Section Il will provide a brief structural summanfy
EPICS and how EPICS control systems are typically
implemented in the field.

Section Il will describe past work on interfacing
Tcl/Tk to EPICS, why we did not choose to use prior
art and what our requirements and desirementsfor a
EPICS interface package were. A discussion of how
we would structure our software is given as well.
Section IV breaks in to three sub-sections. The fi
describes the low-level compiled extension that
provides Tcl/Tk applications with access to EPICS
control system channels. The second describesd set
Tk mega widgets that can be used to meet some
control system needs irrespective of the underlying
control system. The third describes a set of “EPICS
aware” mega widgets that can be used to quicklibui
control system applications in Tcl/Tk.

Section V will describe the status of the softwiéte,
level of adoption amongst the various development
groups at the NSCL, and availability for outside.us

Il. INTRODUCINGEPICS

EPICS is a distributed control system that wasioaity
developed collaboratively at Los Alamos Nationabbeatories
and Argonne National Laboratories in 1989 as assloffot of
the Ground Test Accelerator (GTA) control systerha
Alamos National Labs. EPICS has been adoptednta
over 30 accelerators world wide, several largediete
systems, telescopes and is also in use in sevarahercial
applications/industrial applications. [4].

In the initial versions of EPICS, work was alloahte 1/0
controllers (I0Cs), and console systems. The Ig8tesns at
the time were typically board level embedded présingnning
the WindRiver vxWorks Software[5]. As i386 commgfi
became increasingly powerful and cost-effectivel(EPIOC
software has migrated to these systems and camnrun
Windows32, Linux, and Solaris86 operating systems.
Furthermore, for smaller systems, the line betvthedOC and
console computer blurs since general-purpose c@rpate
capable of running elements of both components.

A typical EPICS deployment is shown below in Figlire

10C 10C 10C 10C

gateway

“:‘J'\ \“:‘J'\ \“:‘!:"\ \“:‘!:"\

Figure 1 A typical EPICS Deployment.

IOC nodes are attached to the hardware eitherttjireG
increasingly, via serial links and private subribts they
gateway on behalf of the EPICS channel accessqobtoAs
more and more hardware interfaces are network ¢eptie
IOC role is increasingly that of a protocol transta Console
systems run applications with which humans. Theway
system servers two purposes:

1. Itis an access point that can determine whystess
outside the EPICS control system are allowed to
access EPICS channels and how.

2. It does broad/multi-cast traffic filtering. TEPICS
channels (or process variables as they are calhed)
not listed in a centralized database. Instead a
broadcast discovery protocol similar to ARP is used
locate the node that serves a specific procesablari

The EPICS process variable is stored as an |I0@aesti
‘database record’. The name of the entry (e.g. NG) can
typically be read to retrieve some hardware valDescriptive
information about ATHING may be found by readinbet
fields of the ATHING record. For example, the eragiring
units of ATHING are, by convention stored in ATHINESGR.

The interesting thing about the EPICS channel aceg®r

from the point of view of the console applicatisrthat there is
no actual distinction, other than convention betwaecessing a
process variable that represents hardware andcaggwariable
that is some other field in the database recordcés®d with
that hardware.

The 10C software operates by cycling through datalvacords
calling handlers for each record that are intertdagbdate the
record’s fields from the hardware and the hardvitama the
record’s fields. Consider a simple example, a paupply.
The power supply has a request voltage and anladitage.

It an be turned on or off. It has a status thataescribe its
state that might be any of on, off, or interlockedrecord for
this hypothetical power supply may have the stmecfinown in
Table 1 below:

Table 1 A Sample EPICS database record.

Field Meaning

PS1 Requested Voltage (write)
Actual Voltage (read)

PS1.EGR Engineering units of the requested voltage
(read; returns “Volts”).

PS1.STATUS | Status of the supply (read; returns ;0n”
“Off” or “Interlocked”).

PS1.REQ Requested voltage (read only)

PS1.0N Write 1 to turn on, 0 to turn off.

PS.TYPE Type of record e.g. PSUPPLY

Note that by convention the name of the recordritem to set
the device and read to retrieve the actual valubeftlevice.
The database driven structure of EPICS providesrakv
advantages.

1. Having created a record structure, and driver ne
instances of a power supply can be created by gimpl
creating new database records and connecting them t
the driver software (record fields not shown could
provide actual hardware connection informatiorhim t
driver, e.g. the serial port device the power sypys
connected on, or a TCP/IP address).

2. Having described a power supply controller via a
database record, only a new driver needs to béewrit
to control a new type of power supply with similar
application layer control characteristics.

3. Changing the hardware allocations of specifinee
devices is not a matter of changing software, oyt o

of changing the database and can be done while the
system is running.

EPICS supports creating new devices by creaiing
database record types (structures), creating iostan
of them and device driver software to support them.

« ET forces application designers to build widgets
appropriate to control rather than providing adityrof
control widgets.

| felt the drawbacks of et-wish were sufficienjustify the

Database records are described via a database metaeffort required to build a new Epics interface w/Tk.

language that is used, in con junction with databas
definitions, to create record instances.

Each channel has a ‘native data type’, but all nelncan be
read as a string. This is a concept that is sirmlaature to the
dual ported Tcl_Obj used in the Tcl internals aril Aowever
the ‘native type’ port is fixed and cannot be chethg
Nonetheless, to some extent, software can be witittat reads
and controls EPICS channels that adhere to th&Rsh
(Everything Is A String) philosophy. It is alpossible to
obtain a process variable’s ‘native data type’ ardwill show
in Section IV how we use that in the epics packageerform
more accurate string conversions that EPICS itkedf.

Research indicates two existing Tcl/Tk packagesshpport
EPICS. These are ET[6], and IT[7]. These are batidled in
the EPICS caTCL extension. It turns out that ISimply an
extension of ET that can export data to the IDladat
visualization and analysis tool[8]. | will therefonot discuss
and analyze the strengths and weaknesses of lepate
identical to ET with the additional requirementttHaL be
available to make full use of its capabilities.

TCLAND EPICS IN THE PAST

ET is delivered as an extended wish shell, et-wishwish
provides the commarigv]. The[pv] command is an
ensemble that allows Tcl applications to link Tatiables to
EPICS process variables, set process variablesE®I8S
channels and check the status of the connectiareketEPICS
channels and the underlying application variablElsere are
some drawbacks however:

« Etis not aloadable package and requires a spadil

et-wish
» Etrequires blt and internally uses its vector type
« Etusage is not very Tclish in particular:

o Tclvariables are type sensitive giving the
impression that Everything Is Not a string

0 Tcllinked variables are not automatically
updated by et-wish but must be manually
updated and manually set.

o Process variables themselves don’t actually

have a good object model. There’s the PV
command, and there are variables linked,
there’s no direct handle for a process variable
that is being manipulated by the program.
» Etdoes not interface well with Tk, (because ef tieed
to manually update linked variables)

Furthermore, since | already had epics channelsadeger
encapsulating classes, | felt | had a good legruthat
development process by interfacing these classésltihrough
my Tcl++ partial encapsulation of the Tcl API.

The vision | had for Tcl/Tk support for EPICS igm in the
software-layering diagram below:

Tcl/Tk & stubs lib.

Interpreter

Application

Table 2 below is a key to the boxes in the figurégure 2.

Table 2 Key to figure 2.

ltem Meaning
CA The EPICS Channel Access
library.

The Tcl APl and the stubs
library that provides a versio
independent front-end to it.

Tcl/Tk&stubs lib

Epics/Tcl A new loadable package that
is stubs enabled providing
Tcl-ish access to EPICS
process variables.

Interpreter A Tcl interpreter instance

Controlwidget Pure Tcl widgets for arbitrary
control applications.
EPICS aware mega widgets.

A console application.

Epicswidgets
Application

In the next section, we will describe the red congrus of this
diagram.

IV. NSCL SUPPORT FOREPICS ANDTCL/TK

A. The epics package

The epics package is about 9000 LOC of C++ softwareh
of it (4300 LOC) the TCL++ wrapping of the Tcl ARInd
much of the rest (3000 LOC) a previously writtentC+
wrapping of the EPICS channel access layer (cag ebics
package (epicstcl for short) provides an objectited
interface to EPICS process variables. This sugport
summarized in Figure 3 below:

Theepicschannekcommand creates a new epics Process
Variable object and a Tcl command that has the same as
the process variable. Operations on the processla are
performed via that command, which, as Figure 3 shievan
ensemble command.

epicschannel
pvnane get
pvnane set
pvnare link
pvnare unlink
pvnane listlinks
pvnhare updatetime
pvname values
pvhame size
pvnane delete

pvnanme
?count ?
val ue-list ?format?
t cl Vari abl eNane
tcvVari abl eName
?pattern?

Figure 3 epicstcl Command summary.

Prior to describing how the package operates, tvamake a
slight digression to describe some of the suppaiostc!
provides for ‘programming in the large’. Programgnin the
large support considers the fact that almost adyt#he same
process variable will appear in different placegt@same
application simultaneously. This can lead to ceelguences
separated physically and temporally by a largeadist like
those shown below:

epicschannel achannel
achannel link achannelVariablel

epicschannel achannel
achannel link achannelVariable2

achannel delete

achannel delete

Which raise questions like:
1. What should the secorgicschannelcommand on
the same process variable as the first do?
2. What should the secotidk subcommand on the
same process variable do?
3. What shouldleletedo?

4. What shouldinlink do in the event a process variable
is unlinked from its Tcl variable?

Good support for programming in the large requihes “the
left hand not have to know what the right handamg” so that
tight module and user interface coupling can bedsd
Therefore three design decisions were made to stippo
programming in the large:

1. Process variable objects have a reference amaht
the epicstcl package internally maintains knowledfe
the process variables that have been created.
Duplicate process variables don't actually create
another object, but instead increment the reference
count. Thedleleteoperation similarly decrements the
reference count and only deletes the underlying
channel object/command when the reference count
reaches zero.

2. The mapping of process variables to Tcl varmide
one to many. That is more than one Tcl variabte ca
be simultaneously linked to an epics process veriab
Changes to the process variable are reflected in al
linked Tcl variables, and a Tcl scripted changarty
linked variable will cause a set to the underlying
process variable (which eventually will cause angjea
in the value of the process variable that in tuilh w
update the value of all the other linked Tcl valeal.

3. Linked Tcl variables also have a reference canadt
epicstcl maintains internal knowledge of thesediik
a manner similar to the channel objects themselves.
This supports a channel being linked to the same Tc
variable more than once.

The EPICS ca library provides ‘channel access’.altavs
access to EPICS process variables. In additiatidaaiing the
application to poll the current values of a prooessable, and
to set new values, EPICS has an event model tppbsts
notifying the application when an epics variable ha
“significantly changed”. The significance of a oga can be
defined in the EPICS database records for a pro@esable.

EPICS performs this natification via threading, e
notification may occur in an arbitrary thread risfato the
thread that requested the notification. It igéf@re important
to get the threading model right with respect ¢biii order to
avoid thread related failures in the Tcl interprete

Tcl/Tk supports an apartment-threading model. Tiuslel
states that:

e Athread can have many interpreters.

» Each interpreter can for the most part be intetacte
with only in the thread that created it (each ipteter
has only one thread).

* API Functions exist to post events to the evenp lob
an interpreter running in an arbitrary thread.

pthreads semaphore and on Windows systems asi@Crit

On the other hand, it is not possible to predidcivh Section) to ensure synchronization of internal datactures
application thread will receive an EPICS updatéfication. within the multiple threads that may be executim@m object.
Therefore the epicstcl loadable package updatesariEbles These are wrapped in objects that acquire the synization
by posting an event to the interpreter that owas vhriable primitive on construction and release on destracsio that
rather than directly updating the variable itself. code of the form:

Initial versions of the package always read thegtversion of CriticalRegion lock(id);

the channel in keeping with Tcl's EIAS philosophysers

discovered, however that EPICS'’s floating poinstiing }

representation conversion functions were inadegesfeecially
for process variables containing small values. és@mple, a
beam current monitor that was displaying a few ramps of
beam (e.g. 5x1BnA) would be converted to the string
“0.000". Therefore, the epicstcl package reads gaocess
variable in its native type. When the channel emtion event
is processed, a native-type to string convertassociated with B. The controlwidget system independent widgets.
the native data type.

Will maintain the appropriate lock discipline eviarthe
presence of C++ exceptions. Tcl semaphores dreseol
because this level of the code is intended forseein non-Tcl
applications.

) o While EPICS is the dominant device control systerthe
The threading model of EPICS also leads to soneegsting NSCL, there are other control systems in simultarae.
edge cases. Consider the script: These include various small Labview systems as agefiome

. ad-hoc systems for special purpose applications.
epicschannel achannel y p purp pp

achannel delete The Widget support for building console application

therefore broken into two layers. The lowest lgy@vides
some re-usable widgets that are independent afcheol
system. These operate very much like normal Tlgetslin the
sense that they may haveariable options orset/getmethods
variable namedchannel. that some control system aware software can usatgpulate

2. Creates the Tcl commagathannnel] the widget appearance to correspond to the appEacdrsome
3. Ina separate thread, EPICS will notify the Gtedn control system parameter.

object that the process variable was successfully))
Snit[9] was used to create these widgets. | haerhany

located and attached. This happens asynchronously. i X) -
4. Once the channel has been successfully attattieed, P/€@sant experiences using Snit as a mega widgeetwork,
and this project was no exception.

channel object can express an interest in update
notifications.
5. Update notifications can then proceed asynchrslyo

The first command expresses an interest in the EPIGcess
variableachannel. This:
1. Creates a new Channel object in the extensit®
channel object requests an attachment to the @oces

The following widgets were written:

and in an arbitrary thread. e Led — Anindicator that simulates a light.
* Meter — A vertically oriented rectangular meter.
The second command declares the application ismget * RadioMatrix — A rectangular array of radio buttons
interested in the channel. This: that can be used to chose one possibility fromrstve
1. Detaches the channel from EPICS « TypeNGo A type in widget coupled with a button that
2. Deletes th¢achannel] command. commits the value in the entry to the control syste
3. Deletes the channel object The entry supports validation that is invoked when
button is clicked. This allows the applicatiorb®
The script shown will typically delete the chanabject before certain that a variable that expects a numberayets
the asynchronous natification that the channelbeesn number e.g.
connected and, often, prior to the actual connedtself. Thus
care must be taken to cancel these notificatiortie discard To give a sense for how these widgets work, Figupelow
notifications for channels that have been alrealgtdd. shows a test script for the meter widget. In daise, the

‘control system’ is just a proc that runs every m8dand jitters

Similarly each low-level channel object has asgediavithita the meter value.
semaphore object (implemented on Unix-like systama

C. The controlwidget EPICS aware widgets

The ultimate intent of our work is to make it edsyreate
control system applications for EPICS at the NSTh.do this
| have also written a set of EPICS aware widg&tsmost
cases, EPICS awareness means that these widgeta hav
—channeloption that binds the widget to display/control a
specific process variable in the EPICS controleyst

The EPICS aware widgets have been implementedras af
shit::widget andsnit::widgetadaptor ‘classes’. Where

package require meter
namespace import controlwidget::*

set metervar 0.5

setjiggleMax 5
set jiggleAmount 0.1

meter .meter -variable metervar \
-from -1.0 -to 1.0
pack .meter

proc jiggle ms {
global metervar
global jiggleCount
global jiggleMax
global jiggleAmount

after $ms [list jiggle $ms]
set jiggle [expr \
rand()*$jiggleAmount - \
$jiggleAmount/2.0]
set metervar [expr $metervar +\
$jiggle]

}
jiggle 100

Figure 4 Test script for meter.

possible, they are implemented on top of the widgét
described in part B. of this section. For examilere is an
epicsMeterwidget. This is implemented in terms of theter
widget described in section B.

The EPICS aware widgets that have been writtenidec!
» EpicsButton: provides several types of epics aware
buttons including a pair of buttons for e.g. onéff
single button that can toggle on/off states, abdtton

that can a process variable to an arbitrary valuenwy
clicked.

e EpicsEnumeratedControl: provides a wrapping of
the RadioMatrix widget described in part B of this
section.

» Epicsgraph: provides a wrapping of the BLT graph
widget that allows one to graph the time evolutibn
one process variable against the time evolutica of
second (see aldgpicsstripchart)..

» EpicsLabel, EpicsLabelWithUnits: provides a read-
only display of a process variable or a procesmlb
with its engineering units.

» EpicsLed: an EPICS aware wrapping of thed
widget described B. above.

e EpicsMeter: an EPICS aware wrapping of thneter
widget described above.

» EpicsBCMMeter: an EPICS aware wrapping of the
meter widget along with range controls suitable for
use with NSCL Beam current monitor devices.

» EpicsPullDown: an EPICS aware pull down menu
that can present a set of choices for the value of
process variable.

e EpicsSpinBox:an EPICS aware spinbox.

» EpicsTypeNGo:an EPICS aware wrapping of the
typeNGo widget.

» EpicsStripChar:t an EPICS aware wrapping of a
BLT stripchart widget that allows time series diata
epics process variables to be displayed.

V. SOFTWARE STATUS AND LEVEL OFADOPTION

The software is currently stable at version 1.4-001is version
has been tested on Windows XP,2000 Linux and MAGXOB
have used this software routinely in my work primgdEPICS
interfaces to the experimenters. It is providedtenconference
CD along with some installation instructions. Ske $oftware
subdirectory of the CD subdirectory for this paper.

I have not been able to interest the NSCL congodsip in this
software. Instead they have embarked on an amabifiooject
to build portable user interfaces using Qt and C+%+hey
estimate this to be a multi-year project, however the
meantime, laboratory administration has given thealgead to
accelerator operators with software developmeneg&pce to
use this to develop their own user interface saoftwand they
have done so with great enthusiasm.

The epicstcl package and associated mega widgetsseaved
as an enabling platform for the NSCL acceleratagrafors to
get functioning control panels that meet their me@ith better
turn-around times than they have had in the pawst,veithout
waiting for the completion of the Qt/C++ applicatio

framework described in the previous paragraph. piwgect
has yielded benefits both for our experimental wgeup and
for the operations program at the NSCL.

VI. REFERENCES

[1] http://www.aps.anl.gov/epics/index.php

[2] http://www.nscl.msu.edu/tech/devices/s800

3]
http://mww.springerlink.com/content/r3224712r7n1486lltex
t.pdf

[4] http://www.aps.anl.gov/epics/projects.php

[5] http://www.windriver.com/products/platforms/

[6] Bob Daly
http://www.aps.anl.gov/epics/EpicsDocumentationdasions
Manuals/TclTk/et.tcltk.html

[7] Bob Daly
http://www.aps.anl.gov/epics/EpicsDocumentationdasions
Manuals/TclTk/it.tcltk.html

[8] http://rsinc.com/idl/

[9] http://en.wikipedia.org/wiki/Snitsnit

